THE EXPRESSION OF AQUAPORINS 1 AND 5 IN RAT LUNG AFTER INTERNAL EXPOSE TO RADIOACTIVE 56MnO2 POWDER

Introduction: The radionuclide 56Mn (T1/2=2.58 hours) is one of the dominant beta- and gamma-emitters within few hours after the neutron irradiation of soil dust following nuclear explosion in atmosphere. The effects of exposure to residual radioactivity from nuclear explosions are the subject of discussions and research of the consequences of nuclear tests and the atomic bombing. In order to simulate the exposure of 56MnO2 pulverized microparticles, experiments were carried out when the experimental rats were exposed to 56MnO2 dispersed powder obtained as a result of neutron activation of stable Mn atoms on a nuclear reactor.

Aim: To study the effect of dispersed 56MnO2 on the expression of genes in rat lung.

Materials and methods: Study design: experimental. In the experiments were used ten week-old male Wistar rats, the mass of which was 220-330 g. A total of 58 animals were used. The rats were divided into 5 groups: 56MnO2 (0.05 Gy), 56MnO2 (0.11 Gy), MnO2, 60Co and control. Animals were examined on days 3, 14 and 60 after exposure. Statistical analysis. All values are presented as mean ± standard error (SEM). Student’s t-test was performed to compare between the control and the radiation- exposed groups. Indicate significantly different from each contol level by p<0.01 and p<0.05.

Results: On day 3 after 56Mn exposure, the expression of aquaporin 1 (AQP1) increased. These changes were persistent even on day 14 or day 60 in case of AQP5 expression. Interestingly, external 60Co gamma-irradiation at a dose of 2 Gy did not change the expression of these genes (with excluding of slightly increased AQP5 gene expression on 3rd day after irradiation). Our data suggest that internal exposure to 56MnO2, even at low doses, has a significant biological impact on the lungs altering the gene expression levels for a prolonged period of time, when it is compared with the effects of external radiation.

Conclusions. All this suggests that the effect of 56MnO2 sprayed microparticles, even with small average doses of internal light irradiation (0.11 Gy), has a very significant biological effect on this organ, as evidenced by a change in the expression levels of AQP5 genes over a very long period of time - in comparison with the external gamma irradiation of 60Co in substantially higher doses (2 Gy). Exposure to dispersed non-radioactive MnO2 did not result in a change in the expression of the studied genes compared to the control.

Ynkar O. Kairkhanova ¹, httр://оrcid.оrg/0000–0001–9533–1723

Nariaki Fujimоtо 2, httр://оrcid.оrg/0000–0002–8570–4001

Nailya Zh. Chaizhunusоva 1, httр://оrcid.оrg/0000–0002–6660–7118

Masaharu Hоshi 2, httр://оrcid.оrg/0000–0001–6978–0883

Valеrij F. Stерanеnkо 3, http://orcid.org/0000-0002-3541-0515 

1 Semey State Medical University, Semey, Republic of Kazakhstan;

2 Hiroshima University, Hiroshima Japan;

3 A. Tsyb Medical Research Radiological Center (MRRC) – National Medical Research Radiological Center Ministry of Health of Russian Federation, Obninsk, Russian Federation.

1.    Stepanenko V.F., Rakhypbekov T.K., Kaprin A.D. i dr., Obluchenie eksperimentalnykh zhivotnykh aktivirovannoi neitronami radioaktivnoi pylyu: razrabotka i realizatsiya metoda – pervye rezultaty mezhdunarodnogo mnogotsentrovogo issledovaniya [Irradiation of laboratory animals by neutron activated dust: development and application of the method – first results of international multicenter study]. Radiatsiya i risk [Radiation and Risk]. 2016, vol. 25, №.4, pp. 111-125. [in Russian]

2.    Coggle J.E., Lambert B.E., Moores S.R. Radiation effects in the lung. Environ. Health Persp. 1986. V. 70. P. 261-291.

3.    Dagle G.E., Sanders C.L. Radionuclide injury to the lung. Environ. Health Persp. 1984. V. 55. P. 129-137.

4.    Ding N.H., Li J.J., Sun L.Q. Molecular mechanisms and treatment of radiation-induced lung fibrosis. Curr. Drug Targets. 2013. V. 14. P. 1347-1356.

5.    Directive 2010/63/EU of the European Parliament and the Council of the Office on the protection of animals used for scientific purposes of 22 September 2010 // Offic. J. of the Europ. Union. 2010. L276. P. 33-79. 15.

6.    Down J.D. The nature and relevance of late lung pathology following localised irradiation of the thorax in mice and rats. Brit. J. Cancer Suppl. 1986. V. 7. P. 330-332.

7.    Fujimoto N., Suzuki T., Ohta S., Kitamura S. Identification of rat prostatic secreted proteins using mass spectrometric analysis and androgen-dependent mRNA expression. J. Androl. 2009. V. 30. P. 669-678.

8.    Hahn F.F., Scott B., Lundgren D.L. Comparative stochastic effects of alpha, beta or x-irradiation of the lung of rats. Health phys. 2010. V. 99. P. 363-366.

9.    Imanaka T., Endo S., Tanaka K., Shizuma K. Gamma-ray exposure from neutron-induced radionuclides in soil in Hiroshima and Nagasaki based on DS02 calculations. Radiat. Environ. Bioph. 2008. V. 47, N 3. P. 331-336.

10.   King L.S., Agre P. Pathophysiology of the aquaporin water channels. Ann. Rev. Physiol. 1996. V. 58. P. 619-648.

11.   Marks L.B., Yu X., Vujaskovic Z., Small W., Folz R., Anscher M.S. Radiation-induced lung injury. Semin. Radiat. Oncol. 2003. V. 13. P. 333-345.

12.   Mehta V. Radiation pneumonitis and pulmonary fibrosis in non-small-cell lung cancer: Pulmonary function, prediction, and prevention. Int. J. Radiat. Oncol. Biol. Phy. 2005. V. 63. P. 5–24.

13.   Pohlers D., Brenmoehl J., Löffler I., Müller C.K., Leipner C., Schultze-Mosgau S., Stallmach A., Kinne R.W., Wolf G. TGF-β and fibrosis in different organs - molecular pathway imprints. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 2009. V. 1792. P. 746-756.

14.   Scott B.R., Hahn F.F., Newton G.J., Snipes M.B., Damon E.G., Mauderly J.L., Boecker B.B., Gray D.H. Experimental studies of the early effects of inhaled beta-emitting radionuclides for nuclear accident risk assessment, Washinton, D.C.: U.S. 1987. Nuclear Regulatory Commission: NUREG/ CR-5067, LMF-117.

15.   Scott B.R., Hahn F.F., Snipes M.B., Newton G.J., Eidson A.F., Mauderly J.L., Boecker B.B. Predicted and observed early effects of combined alpha and beta lung irradiation. Health phys. 1990. V. 59. P. 791-805.

16.   Shichijo K., Fujimoto N., Uzbekov D., Kairkhanova Y., Saimova A., Chaizhunusova N., Sayakenov N., Shabdarbaeva D., Aukenov N., Azimkhanov A., Kolbayenkov A., Mussazhanova A., Niino D., Nakashima M., Zhumadilov K., Stepanenko V., Tomonaga M., Rakhypbekov T., Hoshi M. Internal exposure to neutron-activated 56Mn dioxide powder in Wistar rats – Part 2: Pathological effects. Radiation and Environmental Biophysics. 2017. V. 56, N 1. P. 55–61.

17.   Song Y., Fukuda N., Bai C., Ma T., Matthay Ma., Verkman A.S. Role of aquaporins in alveolar fluid clearance in neonatal and adult lung, and in oedema formation following acute lung injury: studies in transgenic aquaporin null mice. J. physiol. 2000. V. 525. P. 771-779.

18.   Stepanenko V., Rakhypbekov T., Otani K., Endo S., Satoh K., Kawano N., Shichijo K., Nakashima M., Takatsuji T., Sakaguchi A., Kato H., Onda Y., Fujimoto N., Toyoda S., Sato H., Dyussupov A., Chaizhunusova N., Sayakenov N., Uzbekov D., Saimova A., Shabdarbaeva D., Skakov M., Vurim A., Gnyrya V., Azimkhanov A., Kolbayenkov A., Zhumadilov K., Kairikhanova Y., Kaprin A., Galkin V., Ivanov S., Kolyzhenkov T., Petukhov A., Yaskova E., Belukha I., Khailov A., Skvortsov V., Ivannikov A., Akhmedova U., Bogacheva V., Hoshi M. Internal exposure to neutron-activated 56Mn dioxide powder in Wistar rats – Part 1: Dosimetry. Radiat. Environ. Biophys. 2017. V. 56, N 1. P. 47–54.

19.   Sun C.Y., Zhao Y.X., Zhong W., Liu D.W., Chen Y.Z., Qin L.L., Bai L., Liu D. The expression of aquaporins 1 and 5 in rat lung after thoracic irradiation. J. Radiat. Res. 2014. V. 55. P. 683-689.

20.   Tanaka K., Endo S., Imanaka T., Shizuma K., Hasai H., Hoshi M. Skin dose from neutron-activated soil for early entrants following the A-bomb detonation in Hiroshima: contribution from beta and gamma rays. Radiat. Environ. Biophys. 2008. V. 47, N 3. P. 323-330.

21.   Towne J.E., Harrod K.S., Krane C.M., Menon A.G. Decreased expression of aquaporin (AQP)1 and AQP5 in mouse lung after acute viral infection. Am. J. Respir. Cell. Mol. Biol. 2000. V. 22. P. 34-44.

22.   Travis E.L., Harley R.A., Fenn J.O., Klobukowski C.J., Hargrove H.B. Pathologic changes in the lung following single and multi-fraction irradiation. Int. J. Radiat. Oncol. 1977. V. 2. P. 475-490.

23.   Ward W.F., Kim Y.T., Molteni A., Ts'ao C., Hinz J.M. Pentoxifylline does not spare acute radiation reactions in rat lung and skin. Radiat. Res. 1992. V. 129. P. 107-111.

Number of Views: 1129


Category of articles: Original article

Bibliography link

Kairkhanova Y.O., Fujimоtо N., Chaizhunusоva N.Zh., Hоshi M., Stерanеnkо V.F. The expression of aquaporins 1 and 5 in rat lung after internal expose to radioactive 56MnO2 powder. Nauka i Zdravookhranenie [Science & Healthcare]. 2017, 3, pp. 50-62.

Авторизируйтесь для отправки комментариев