РАДИАЦИОННО–ИНДУЦИРОВАННЫЕ ПОВРЕЖДЕНИЯ ЛЕГКИХ. ОБЗОР ЛИТЕРАТУРЫ
Open article in archive
Введение. Несмотря на существующие многочисленные данные по результатам морфологических исследований легких на клеточном и тканевом уровнях в различных радиационных ситуациях, по оценке связи увеличения бронхолегочных заболеваний с величинами доз внешнего и внутреннего облучения в остром и отдалённом периодах, до настоящего времени не до конца изучена связь выявленных легочных нарушений с воздействием γ– и нейтронного излучения, не полностью доказано значение дозовых нагрузок и длительности радиационного влияния на характер выявляемой патологии, отсутствуют системные данные о морфогенезе их повреждающего действия на легкие. Целью обзора явился анализ литературы о xapaктере морфофункциональных paccтройств в легких пpи paзных уpoвнях и типах радиационного воздействия. Материалы и методы исследования. Для достижения поставленной цели нами проведен поиск и анализ научных публикаций. Все принятые к формированию обзора работы были индексированы в базах данных PubMed, Medline, E–library, Cyberleninka при помощи научной поисковой системы «Google Scholar». Перед началом поиска были выставлены следующие поисковые фильтры: экспериментальные исследования, выполненные на мышах и крысах, в течение последних 10 лет, опубликованные на английском, японском и русском языках, а также полные версии статей с чётко сформулированными и статистически доказанными выводами. Критериями исключения публикаций в обзор стали резюме докладов, газетные публикации и личные сообщения. Результаты. Анализ литературных данных показал, что радиационно–индуцированные повреждения легких определяются поражением бронхов, вызывающем развитие ателектазов с последующей соединительнотканной организацией, серозно–фибринозным альвеолитом с десквамацией эпителия, поражением сосудов, с пролиферацией эндотелия, повышенной проницаемостью сосудов с выхождением белков плазмы. Следует отметить, что вторичные иммунодефицитные состояния, развивающиеся под действием радиационного фактора являются патогенетическими механизмами, реализация которых способствует формированию воспалительных и фибротических процессов в легких, обуславливающих развитие острого воспалительно–инфильтративного пневмонита и хронического фиброзирующего пневмонита. Выводы. Полученные данные подтверждают роль ионизирующего излучения в формировании морфологических признаков, характерных для радиационно–индуцированного пневмонита и фиброза легких, являющихся формой повреждения легких, зависящая не только от дозы, но и от вида излучения. По результатам большинства ведущих исследований в области радиологии по вопросу оценки действия нейтронного излучения на легкие нет единого мнения. Таким образом, для радиобиологов и морфологов представляется несомненной актуальность продолжения исследований, посвященных изучению воздействия нейтронного излучения, оценить и сравнить степень структурных изменений в легких, что позволит разработать диагностические критерии при исследовании легких лиц, подвергавшихся воздействию различных видов ионизирующего излучения.
Дархан Е. Узбекoв¹, http://orcid.org/0000–0003–4399–460X Масахару Хоши², http://orcid.org/0000–0001–6978–0883 Найля Ж. Чайжунусова³, http://orcid.org/0000–0002–6660–7118 Дария М. Шабдарбаева¹, http://orcid.org/0000–0001–9463–1935 Нурлан Б. Саякенoв¹, http://orcid.org/0000–0002–5082–7554 Гoсударственный медицинский университет города Семей, ¹ Кафедра патoлoгическoй анатoмии и судебнoй медицины, ³ Кафедра питания и гигиенических дисциплин, г. Семей, Казахстан; ² Университет Хиросима, Научно–исследовательский институт радиационной биологии и медицины, г. Хиросима, Япония.
1. Апсаликов К.Н., Гусев Б.И., Мулдагалиев Т.Ж., Кенжина Л.Б., Белихина Т.И. Объективизация маркеров радиационного повреждения в группах радиационного риска, представленных экспонированным радиацией населением ВКО и их потомками // Наука и Здравоохранение. 2011. № 4. С. 20–22. 2. Апсаликов Р.К. Оценка медицинских потерь среди лиц, проживающих на территориях, прилегающих к семипалатинскому ядерному полигону в отдаленном периоде // Наука и Здравоохранение. 2013. № 5. С. 49–52. 3. Жетписбаев Б.А., Мадиева М.Р., Сайдахметова А.С., Танатова З.А., Оразбаева А.К. и др. Нарушение метаболизма в легких и миокарде при радиационном поражении организма в эксперименте // Наука и Здравоохранение. 2009. Т. 2, № 4. С. 153–154. 4. Жетписбаев Б.А., Мадиева М.Р., Сайдахметова А.С., Танатова З.А., Оразбаева А.К. и др. Состояние перекисного окисления липидов в легких и миокарде после фракционированного гамма–облучения // Наука и Здравоохранение. 2009. Т. 2, № 4. С. 127–128. 5. Жетписбаев Б.А., Серимханова Б.Т., Аргынбекова А.С., Мусайнова А.К., Оразбаева А.К. и др. Медицинские последствия влияния малой дозы радиоактивного загрязнения окружающей среды // Наука и Здравоохранение. 2010. Т. 1, № 1. С. 7–11. 6. Манамбаева З.А., Апсаликов Б.А., Жабагин К.Т., Оспанов Е.А., Камзин К.Ж. Результаты лучевой терапии рака легких и применения предуктала // Наука и Здравоохранение. 2012. № 5. С. 124–125. 7. Рахыпбеков Т.К., Хоши М., Степаненко В.Ф., Жумадилов К.Ш., Чайжунусова Н.Ж. и др. Радиационно–биологический эксперимент на комплексе исследовательских реакторов «Байкал–1» // Человек. Энергия. Атом. 2015. № 2 (24). С. 43–45. 8. Степаненко В.Ф., Рахыпбеков Т.К., Каприн А.Д., Иванов С.А., Отани К. и др. Облучение экспериментальных животных активированной нейтронами радиоактивной пылью: разработка и реализация метода – первые результаты международного многоцентрового исследования // Радиация и риск. 2016. Т. 25, № 4. С. 112–125. 9. Abuo El Naga I., Abd Rabou M. The possible protective role of bone marrow transplantation on irradiated mothers and their fetuses // Stem Cell. 2012. Vol. 3, N 3. P. 8–30. 10. Baker R., Han G., Sarangkasiri S., DeMarco M., Turke C. et al. Clinical and dosimetric predictors of radiation pneumonitis in a large series of patients treated with stereotactic body radiation therapy to the lung // Int. J. Radiat. Oncol. Biol. Phys. 2013. Vol. 85, N 1. P. 190–195. 11. Bocchino M., Agnese S., Fagone E., Svegliati S., Grieco D. et al. Reactive oxygen species are required for maintenance and differentiation of primary lung fibroblasts in idiopathic pulmonary fibrosis // PLoS One. 2010. Vol. 5, N 1. 14003 p. 12. Borie R., Tabeze L., Thabut G., Nunes H., Cottin V. et al. Prevalence and characteristics of TERT and TERC mutations in suspected genetic pulmonary fibrosis // Eur. Respir. J. 2016. Vol. 48, N 6. P. 1721–1731. 13. Borst G.R., Ishikawa M., Nijkamp J., Hauptmann M., Shirato H. et al. Radiation pneumonitis in patients treated for malignant pulmonary lesions with hypofractionated radiation therapy // Radiother. Oncol. 2009. Vol. 91, N 3. P. 307–313. 14. Bromet E.J., Havenaar J.M., Guey L.T. A 25 year retrospective review of the psychological consequences of the Chernobyl accident // Clin. Oncol. 2011. Vol. 23, N 4. P. 297–305. 15. Brush J., Lipnick S.L., Phillips T., Sitko J., McDonald J.T. et al. Molecular mechanisms of late normal tissue injury // Semin. Radiat. Oncol. 2007. Vol. 17, N 2. P. 121–130. 16. Burnette B., Weichselbaum R.R. Radiation as an immune modulator // Semin. Radiat. Oncol. 2013. Vol. 23, N 4. P. 273–280. 17. Cappuccini F., Eldh T., Bruder D., Gereke M., Jastrow H. et al. New insights into the molecular pathology of radiation–induced pneumopathy // Radiother. Oncol. 2011. Vol. 101, N 1. P. 86–92. 18. Chen H., Xiang H., Wu B., Zhang X., Li M. et al. Manganese superoxide dismutase gene modified mesenchymal stem cells attenuates acute radiation–induced lung injury // Hum. Gene Ther. 2016. N 4. P. 517–529. 19. Claudia C. Advances in mechanisms of repair and remodeling in acute lung injury // Intensive Care Medicine. 2008. Vol. 34, N 4. P. 619–630. 20. Davis B.K., Wen H., Ting J.P. The inflammasome NLRs in immunity, inflammation, and associated diseases // Annu. Rev. Immunol. 2011. Vol. 29. P. 707–735. 21. Diederich S. Chest CT for suspected pulmonary complications of oncologic therapies: how I review and report // Cancer Imaging. 2016. Vol. 16. 7 p. 22. Ding N.H., Li J.J., Sun L.Q. Molecular mechanisms and treatment of radiation–induced lung fibrosis // Curr. Drug Targets. 2013. Vol. 14, N 11. P. 1347–1356. 23. Dorn P., Tieche C.C., Peng R.W., Froment L., Schmid R.A. et al. Schedule–dependent increased efficiency of pemetrexed–ionizing radiation combination therapy elicits a differential DNA damage response in lung cancer cells // Cancer Cell Int. 2016. Vol. 16, N 1. 66 p. 24. Epler G.R., Kelly E.M. Systematic review of postradiotherapy bronchiolitis obliterans organizing pneumonia in women with breast cancer // Oncologist. 2014. Vol. 19, N 12. P. 1216–1226. 25. Fleckenstein K., Gauter–Fleckenstein B., Jackson I., Rabbani Z., Anscher M. et al. Using biological markers to predict risk of radiation injury // Semin. Radiat. Oncol. 2007. Vol. 17, N 2. P. 89–98. 26. Franchi L., Eigenbrod T., Munoz–Planillo R., Nunez G. The inflammasome: a caspase–1–activation platform that regulates immune responses and disease pathogenesis // Nat. Immunol. 2009. Vol. 10, N 3. P. 241–247. 27. Fujino M., Shirato H.,Onishi H., Kawamura H., Takayama K. et al. Characteristics of patients who developed radiation pneumonitis requiring steroid therapy after stereotactic irradiation for lung tumors // Cancer J. 2006. Vol. 12, N 1. P. 41–46. 28. Gao F., Fish B.L., Moulder J.E., Jacobs E.R., Medhora M. Enalapril mitigates radiation–induced pneumonitis and pulmonary fibrosis if started 35 days after whole–thorax irradiation // Radiat. Res. 2013. Vol. 180, N 5. P. 546–552. 29. Garofalo M., Bennett A., Farese A.M., Harper J., Ward A. et al. The delayed pulmonary syndrome following acute high–dose irradiation: a rhesus macaque model // Health Phys. 2014. Vol. 106, N 1. P. 56–72. 30. Ghafoori P., Marks L.B., Vujaskovic Z., Kelsey C.R. Radiation–induced lung injury. Assessment, management, and prevention // Oncology (Williston Park). 2008. Vol. 22, N 1. P. 37–47. 31. Ghobadi G., Bartelds B., van der Veen S.J., Dickinson M.G., Brandenburg S. et al. Lung irradiation induces pulmonary vascular remodelling resembling pulmonary arterial hypertension // Thorax. 2012. Vol. 67, N 4. P. 334–341. 32. Ghosh S.N., Wu Q., Mader M., Fish B.L., Moulder J.E. et al. Vascular injury after whole thoracic x–ray irradiation in the rat // Int. J. Radiat. Oncol. Biol. Phys. 2009. Vol. 74, N 1. P. 192–199. 33. Goertz O., Poettgen C., Akbari A., Kolbenschlag J., Langer S. et al. New model for long–term investigations of cutaneous microcirculatory and inflammatory changes following irradiation // J. Radiat. Res. 2015. Vol. 56, N 3. P. 456–461. 34. Gong H.Y., Hu W.G., Hu Q.Y., Li X.P., Song Q.B. Radiation–induced pulmonary injury accelerated pulmonary metastasis in a mouse model of breast cancer // Oncol. Lett. 2015. Vol. 10, N 6. P. 3613–3618. 35. Groves A.M., Johnston C.J., Misra R.S., Williams J.P., Finkelstein J.N. Effects of IL–4 on pulmonary fibrosis and the accumulation and phenotype of macrophage subpopulations following thoracic irradiation // Int. J. Radiat. Biol. 2016. Vol. 92, N 12. P. 754–765. 36. Hamada N., Fujimichi Y. Classification of radiation effects for dose limitation purposes: history, current situation and future prospects // J. Radiat. Res. 2014. Vol. 55, N 4. P. 629–640. 37. Han G., Zhang H., Xie C.H., Zhou Y.F. Th2–like immune response in radiation–induced lung fibrosis // Oncol. Rep. 2011. Vol. 26, N 2. P. 383–388. 38. Haston C.K., Begin M., Dorion G., Cory S.M. Distinct loci influence radiation–induced alveolitis from fibrosing alveolitis in the mouse // Cancer Res. 2007. Vol. 67, N 22. P. 10796–10803. 39. Hirai Y., Kodama Y., Cullings H.M., Miyazawa C., Kanamura N. Electron spin resonance analysis of tooth enamel does not indicate exposure to large radiation doses in a large proportion of distally–exposed a–bomb survivors // Radiat. Res. 2011. Vol. 52. P. 600–608. 40. Hiyama K., Tanimoto K., Nishimura Y., Tsugane M., Fukuba I. et al. Exploration of the genes responsible for unlimited proliferation of immortalized lung fibroblasts // Exp. Lung Res. 2008. Vol. 34, N 7. P. 373–390. 41. Hong Z.Y, Eun S.H., Park K., Choi W.H., Lee J.I. et al. Development of a small animal model to simulate clinical stereotactic body radiotherapy–induced central and peripheral lung injuries // J. Radiat. Res. 2014. Vol. 55, N 4. P. 648–657. 42. Hong Z.Y., Song K.H., Yoon J.H., Cho J., Story M.D. An experimental model–based exploration of cytokines in ablative radiation–induced lung injury in vivo and in vitro // Lung. 2015. Vol. 193, N 3. P. 409–419. 43. Hu Y., Li J., Su X. Fatal pneumonitis associated with postoperative intensity–modulated radiotherapy in lung cancer: case report and review // Oncol. Lett. 2013. Vol. 5, N 2. P. 714–716. 44. Jang S.S., Kim H.G., Han J.M., Lee J.S., Choi M.K. et al. Modulation of radiation–induced alterations in oxidative stress and cytokine expression in lung tissue by Panax ginseng extract // Phytother. Res. 2015. Vol. 29, N 2. P. 201–209. 45. Jenkins P., Welsh A. Computed tomography appearance of early radiation injury to the lung: correlation with clinical and dosimetric factors // Int. J. Radiat. Oncol. Biol. Phys. 2011. Vol. 81, N 1. P. 97–103. 46. Jiang X., Qu C., Chang P., Zhang C., Qu Y. et al. Intravenous delivery of adipose–derived mesenchymal stromal cells attenuates acute radiation–induced lung injury in rats // Cytotherapy. 2015. Vol. 17, N 5. P. 560–570. 47. Kalash R., Berhane H., Au J., Rhieu B.H., Epperly M.W. et al. Differences in irradiated lung gene transcription between fibrosis–prone C57BL/6NHsd and fibrosis–resistant C3H/HeNHsd mice // In Vivo. 2014. Vol. 28, N 2. P. 147–171. 48. Kano A., Ujita M., Kobayashi M., Sunakawa Y., Shirahama J. et al. Radiographic and CT features of radiation–induced organizing pneumonia syndrome after breast–conserving therapy // Jpn J. Radiol. 2012. Vol. 30, N 2. P. 128–136. 49. Kerr G.D., Egbert S.D., Al–Nabulsi I., Bailiff I.K., Beck H.L. et al. Workshop report on atomic bomb dosimetry–review of dose related factors for the evaluation of exposures to residual radiation at Hiroshima and Nagasaki // Health Phys. 2015. Vol. 109, N 6. P. 581–600. 50. Kerr G.D., Egbert S.D., Al–Nabulsi I., Beck H.L., Cullings H.M. et al. Workshop report on atomic bomb dosimetry–residual radiation exposure: recent research and suggestions for future studies // Health Phys. 2013. Vol. 105, N 2. P. 140–149. 51. Khalil A.A., Hoffmann L., Moeller D.S., Farr K.P., Knap M.M. New dose constraint reduces radiation–induced fatal pneumonitis in locally advanced non–small cell lung cancer patients treated with intensity–modulated radiotherapy // Acta Oncol. 2015. Vol. 54, N 9. P. 1343–1349. 52. Kim B.Y., Jin H., Lee Y.J., Kang G.Y., Cho J. et al. Focal exposure of limited lung volumes to high–dose irradiation down–regulated organ development–related functions and up–regulated the immune response in mouse pulmonary tissues // BMC Genet. 2016. Vol. 17. 29 p. 53. Li M., Abdollahi A., Gröne H.J., Lipson K.E., Belka C. et al. Late treatment with imatinib mesylate ameliorates radiation–induced lung fibrosis in a mouse model // Radiat. Oncol. 2009. Vol. 4. 66 p. 54. Liang H., Deng L., Chmura S., Burnette B., Liadis N. et al. Radiation–induced equilibrium is a balance between tumor cell proliferation and T cell–mediated killing // J. Immunol. 2013. Vol. 190, N 11. P. 5874–5881. 55. Liu Y., Xia T., Zhang W., Zhong Y., Zhang L. et al. Variations of circulating endothelial progenitor cells and transforming growth factor–beta–1 (TGF–β1) during thoracic radiotherapy are predictive for radiation pneumonitis // Radiat. Oncol. 2013. Vol. 8. 189 p. 56. Maddams J., Parkin D.M., Darby S.C. The cancer burden in the United Kingdom in 2007 due to radiotherapy // Int. J. Cancer. 2011. Vol. 129, N 12. P. 2885–2893. 57. Maebayashi T., Ishibashi N., Aizawa T., Sakaguchi M., Sato T. et al. Radiation pneumonitis changes over time after stereotactic body radiation therapy for lung tumors: Post–treatment Cavity (Sunny–side–up Egg–like) Changes // Anticancer Res. 2016. Vol. 36, N 10. P. 5563–5570. 58. Marples B., Downing L., Sawarynski K.E., Finkelstein J.N., Williams J.P. et al. Pulmonary injury after combined exposures to low–dose low–LET radiation and fungal spores // Radiat. Res. 2011. Vol. 175, N 4. P. 501–509. 59. Mazeron R., Etienne–Mastroianni B., Perol D., Arpin D., Vincent M. et al. Predictive factors of late radiation fibrosis: a prospective study in non–small cell lung cancer // Int. J. Radiat. Oncol. Biol. Phys. 2010. Vol. 77, N 1. P. 38–43. 60. Medhora M., Gao F., Jacobs E.R., Moulder J.E. Radiation damage to the lung: mitigation by angiotensin–converting enzyme (ACE) inhibitors // Respirology. 2012. Vol. 17, N. 1. P. 66–71. 61. Mehrad B., Strieter R.M. Fibrocytes and the pathogenesis of diffuse parenchymal lung disease // Fibrogenesis & Tissue Repair. 2012. Vol. 5, N 1. 22 p. 62. Molthen R.C., Wu Q., Fish B.L., Moulder J.E., Jacobs E.R. et al. Mitigation of radiation induced pulmonary vascular injury by delayed treatment with captopril // Respirology. 2012. Vol. 17, N 8. P. 1261–1268. 63. Moore B.B., Hogaboam C.M. Murine models of pulmonary fibrosis // Am J. Physiol. Lung Cell. Mol. Physiol. 2008. Vol. 294. P. 152–160. 64. Murofushi K.N., Oguchi M., Gosho M., Kozuka T., Sakurai H. Radiation–induced bronchiolitis obliterans organizing pneumonia (BOOP) syndrome in breast cancer patients is associated with age // Radiat. Oncol. 2015. Vol. 10. 103 p. 65. Nuovo G.J., Garofalo M., Valeri N., Roulstone V., Volinia S. et al. Reovirus–associated reduction of microRNA–let–7d is related to the increased apoptotic death of cancer cells in clinical samples // Mod. Pathol. 2012. Vol. 25, N 10. P. 1333–1344. 66. Ochiai S., Nomoto Y., Yamashita Y., Murashima S., Hasegawa D. et al. Radiation–induced organizing pneumonia after stereotactic body radiotherapy for lung tumor // J. Radiat. Res. 2015. Vol. 56, N 6. P. 904–911. 67. Oie Y., Saito Y., Kato M., Ito F., Hattori H. et al. Relationship between radiation pneumonitis and organizing pneumonia after radiotherapy for breast cancer // Radiat. Oncol. 2013. Vol. 8. 56 p. 68. Palmer J.D., Zaorosky N.G., Witek M., Lu B. Molecular markers to predict clinical outcome and radiation–induced toxicity in lung cancer // J. Thorac. Dis. 2014. Vol. 6, N 4. P. 387–398. 69. Park K.J., Oh Y.T., Kil W.J., Park W., Kang S.H. et al. Bronchoalveolar lavage findings of radiation induced lung damage in rats // J. Radiat. Res. 2009. Vol. 50, N 3. P. 177–182. 70. Paun A., Haston C.K. Genomic and genome–wide association of susceptibility to radiation–induced fibrotic lung disease in mice // Radiother. Oncol. 2012. Vol. 105, N 3. P. 350–357. 71. Paun A., Kunwar A., Haston C.K. Acute adaptive immune response correlates with late radiation–induced pulmonary fibrosis in mice // Radiat. Oncol. 2015. Vol. 10. 45 p. 72. Pietrofesa R.A., Solomides C.C., Christofidou–Solomidou M. Flaxseed mitigates acute oxidative lung damage in a mouse model of repeated radiation and hyperoxia exposure associated with space exploration // J. Pulm. Respir. Med. 2014. Vol. 4, N 6. P. 215–224. 73. Porcel J.M., Azzopardi M., Koegelenberg C.F., Maldonado F. et al. The diagnosis of pleural effusions // Expert Rev. Respir. Med. 2015. Vol. 9, N 6. P. 801–815. 74. Preston D.L., Ron E., Tokuoka S., Funamoto S., Nishi N. et al. Solid cancer incidence in atomic bomb survivors: 1958–1998 // Radiat. Res. 2007. Vol. 168, N 1. P. 1–64. 75. Rube C.E., Palm J., Erren M., Fleckenstein J., Konig J. et al. Cytokine plasma levels: reliable predictors for radiation pneumonitis? // PLoS One. 2008. Vol. 3, N 8. 2898 p. 76. Ryerson C.J., Hartman T., Elicker B.M., Ley B., Lee J.S. et al. Clinical features and outcomes in combined pulmonary fibrosis and emphysema in idiopathic pulmonary fibrosis // Chest. 2013. Vol. 144, N 1. P. 234–240. 77. Saintigny P., Burger J.A. Recent advances in non–small cell lung cancer biology and clinical management // Discov. Med. 2012. Vol. 13, N 71. P. 287–297. 78. Saito–Fujita T., Iwakawa M., Nakamura E., Nakawatari M., Fujita H. et al. Attenuated lung fibrosis in interleukin 6 knock–out mice after C–ion irradiation to lung // J. Radiat. Res. 2011. Vol. 52, N 3. P. 270–277. 79. Schallenkamp J.M., Miller R.C., Brinkmann D.H., Foote T., Garces Y.I. Incidence of radiation pneumonitis after thoracic irradiation: Dose–volume correlates // Int. J. Radiat. Oncol. Biol. Phys. 2007. Vol. 67, N 2. P. 410–416. 80. Shank B. Toxicity due to total body irradiation // Hum. Radiat. Injury. 2010. N 1. P. 133–139. 81. Shi A., Zhu G., Wu H., Yu R., Li F. et al. Analysis of clinical and dosimetric factors associated with severe acute radiation pneumonitis in patients with locally advanced non–small cell lung cancer treated with concurrent chemotherapy and intensity–modulated radiotherapy // Radiat. Oncol. 2010. Vol. 5. 35 p. 82. Siva S., MacManus M., Kron T., Best N., Smith J. et al. A pattern of early radiation–induced inflammatory cytokine expression is associated with lung toxicity in patients with non–small cell lung cancer // PLoS One. 2014. Vol. 9, N 10. 560 p. 83. Sohn S.H., Lee J.M., Park S., Yoo H., Kang J.W. et al. The inflammasome accelerates radiation–induced lung inflammation and fibrosis in mice // Environ. Toxicol. Pharmacol. 2015. Vol. 39, N 2. P. 917–926. 84. Stewart F.A., Akleyev A.V., Hauer–Jensen M., Hendry J.H., Kleiman N.J. et al. ICRP Publication 118: ICRP Statement on tissue reactions, early and late effects of radiation in normal tissues and organs–threshold doses for tissue reactions in a radiation protection context // Ann. ICRP. 2012. Vol. 41, N 1/2. 322 p. 85. Terashima T., Iwami E., Chubachi S., Ikemura S., Nakajima T. et al. A case of small cell lung cancer treated with concurrent chemoradiotherapy with carboplatin plus etoposide in a hemodialysis patient // Gan To Kagaku Ryoho. 2016. Vol. 43, N 1. P. 99–101. 86. Todd N.W., Luzina I.G., Atamas S.P. Molecular and cellular mechanisms of pulmonary fibrosis // Fibrogenesis & Tissue Repair. 2012. Vol. 5, N 1. 11 p. 87. Ulubay G., Kupeli E., Er Dedekargınoglu B., Savas Bozbas S., Alekberov M. et al. Postoperative pleural effusions after orthotopic heart transplant: cause, clinical manifestations, and course // Exp. Clin. Transplant. 2016. Vol. 14, N 3. P. 125–129. 88. Uzbеkоv D., Hoshi M., Shiсhijо K., Сhаizhunusоvа N., Shаbdаrbаеvа D. et al. Rаdiаtiоn еffесts оn mоrphоfunсtiоnаl stаtе оf thе rеspirаtоry systеm // Astana medical journal. 2016. N 4 (90). P. 56–62. 89. Uzbеkоv D., Shiсhijо K., Сhаizhunusоvа N., Shаbdаrbаеvа D., Sаyаkеnоv N. et al. Rаdiаtiоn еffесts оn thе pulmоnаry histоlоgiсаl struсturе оf еxpеrimеntаl rаts // XII Intеrnаtiоnаl sсiеntifiс–prасtiсаl соnfеrеnсе «Есоlоgy. Rаdiаtiоn. Hеаlth» dеdiсаtеd tо асаdеmiсiаn B. Аtсhаbаrоv аnd 25 yеаrs frоm thе dаtе оf сlоsing оf Sеmipаlаtinsk nuсlеаr tеst sitе // Sciеncе & Hеalthcarе. Sеmеy, 2016. 185 p. 90. Van der Veen S.J., Ghobadi G., de Boer R.A., Faber H., Cannon M.V. et al. ACE inhibition attenuates radiation–induced cardiopulmonary damage // Radiother. Oncol. 2015 Vol. 114, N 1. P. 96–103. 91. Walkin L., Herrick S.E., Summers A., Brenchley P.E., Hoff C.M. et al. The role of mouse strain differences in the susceptibility to fibrosis: a systematic review // Fibrogenesis & Tissue Repair. 2013. Vol. 6, N 1. 18 p. 92. Wang D., Shi J., Liang S., Lu S., Qi X. et al. Dose–volume histogram parameters for predicting radiation pneumonitis using receiver operating characteristic curve // Clin. Transl. Oncol. 2013. Vol. 15, N 5. P. 364–369. 93. Wang L.P., Wang Y.W., Wang B.Z., Sun G.M., Wang X.Y. et al. Expression of interleukin–17A in lung tissues of irradiated mice and the influence of dexamethasone // Scientific World Journal. 2014. Vol. 2014. 251067 p. 94. Westbury C.B., Yarnold J.R. Radiation fibrosis – current clinical and therapeutic perspectives // Clin. Oncol. (R. Coll. Radiol). 2012. Vol. 24, N 10. P. 657–672. 95. Williams J.P., Brown S.L., Georges G.E., Hauer–Jensen M., Hill R.P. et al. Animal models for medical countermeasures to radiation exposure // Radiat. Res. 2010. Vol. 173, N 4. P. 557–578. 96. Xie L., Zhou J., Zhang S., Chen Q., Lai R. et al. Integrating microRNA and mRNA expression profiles in response to radiation–induced injury in rat lung // Radiat. Oncol. 2014. Vol. 9. 111 p. 97. Xu L., Xiong S., Guo R., Yang Z., Wang Q. et al. Transforming growth factor β3 attenuates the development of radiation–induced pulmonary fibrosis in mice by decreasing fibrocyte recruitment and regulating IFN–γ/IL–4 balance // Immunol. Lett. 2014. Vol. 162, N 1 (A). P. 27–33. 98. Yamada M., Kasagi F., Mimori Y., Miyachi T., Ohshita T. et al. Incidence of dementia among atomic–bomb survivors – radiation effects research foundation adult health study // J. Neurol. Sci. 2009. Vol. 281, N 1–2. P. 11–14. 99. Yang S., Zhang M., Chen C., Cao Y., Tian Y. et al. Triptolide mitigates radiation–induced pulmonary fibrosis // Radiat. Res. 2015. Vol. 184, N 5. P. 509–517. 100. Zhang R., Ghosh S.N., Zhu D., North P.E., Fish B.L. et al. Structural and functional alterations in the rat lung following whole thoracic irradiation with moderate doses: injury and recovery // Int. J. Radiat. Biol. 2008. Vol. 84, N 6. P. 487–497. Rеfеrеncеs: 1. Apsalikov K.N., Gusev B.I., Muldagaliev T.Zh., Kenzhina L.B., Belikhina T.I. Ob"ektivizatsiya markerov radiatsionnogo povrezhdeniya v gruppakh radiatsionnogo riska, predstavlennykh eksponirovannym radiatsiei naseleniem VKO i ikh potomkami [Objectification markers of radiation damage in radiation risk groups represented by the radiation–exposed population of East Kazakhstan region and their offsprings]. Nauka i Zdravооhranеniе [Sciеncе & Hеalthcarе]. 2011. N 4. pp. 20–22. [in Russian] 2. Apsalikov R.K. Otsenka meditsinskikh poter' sredi lits, prozhivayushchikh na territoriyakh, prilegayushchikh k semipalatinskomu yadernomu poligonu v otdalennom periode [Evaluation of health loss among people living in the areas adjacent to the Semipalatinsk nuclear test site in the long term]. Nauka i Zdravооhranеniе [Sciеncе & Hеalthcarе]. 2013. N 5. pp. 49–52. [in Russian] 3. Zhetpisbaev B.A., Madieva M.R., Saidakhmetova A.S., Tanatova Z.A., Orazbaeva A.K. i dr. Narushenie metabolizma v legkikh i miokarde pri radiatsionnom porazhenii organizma v eksperimente [Disorder of metabolism in the lungs and the myocardium during radiation injury of the organism in an experiment]. Nauka i Zdravооhranеniе [Sciеncе & Hеalthcarе]. 2009. Т. 2, N 4. pp. 153–154. [in Russian] 4. Zhetpisbaev B.A., Madieva M.R., Saidakhmetova A.S., Tanatova Z.A., Orazbaeva A.K. i dr. Sostoyanie perekisnogo okisleniya lipidov v legkikh i miokarde posle fraktsionirovannogo gamma–oblucheniya [The condition of lipid peroxidation in lung and myocardium after fractionated gamma–irradiation]. Nauka i Zdravооhranеniе [Sciеncе & Hеalthcarе]. 2009. Т. 2, N 4. pp. 127–128. [in Russian] 5. Zhetpisbaev B.A., Serimkhanova B.T., Argynbekova A.S., Musainova A.K., Orazbaeva A.K. i dr. Meditsinskie posledstviya vliyaniya maloi dozy radioaktivnogo zagryazneniya okruzhayushchei sredy [Medical outcomes of low dose effects of the environmental radioactive contamination]. Nauka i Zdravооhranеniе [Sciеncе & Hеalthcarе]. 2010. Т. 1, N 1. pp. 7–11. [in Russian] 6. Manambaeva Z.A., Apsalikov B.A., Zhabagin K.T., Ospanov E.A., Kamzin K.Zh. Rezul'taty luchevoi terapii raka legkikh i primeneniya preduktala [The results of the lung cancer radiotherapy and application preductal]. Nauka i Zdravооhranеniе [Sciеncе & Hеalthcarе]. 2012. N 5. pp. 124–125. [in Russian] 7. Rakhypbekov T.K., Hoshi M., Stepanenko V.F., Zhumadilov K.Sh., Chaizhunusova N.Zh. i dr. Radiatsionno–biologicheskii eksperiment na komplekse issledovatel'skikh reaktorov «Baikal–1» [Radiation–chemical experiment on complex of research reactors "Baikal–1"]. Chelovek. Energiya. Atom [Human. Energy. Atom]. 2015. N 2 (24). pp. 43–45. [in Russian] 8. Stepanenko V.F., Rakhypbekov T.K., Kaprin A.D., Ivanov S.A., Otani K. i dr. Obluchenie eksperimental'nykh zhivotnykh aktivirovannoi neitronami radioaktivnoi pyl'yu: razrabotka i realizatsiya metoda – pervye rezul'taty mezhdunarodnogo mnogotsentrovogo issledovaniya [Irradiation of laboratory animals by neutron activated dust: development and application of the method – first results of international multicenter study]. Radiatsiya i risk [Radiation and risk]. 2016. T. 25, N 4. pp. 112–125. [in Russian] 9. Abuo El Naga I., Abd Rabou M. The possible protective role of bone marrow transplantation on irradiated mothers and their fetuses. Stem Cell. 2012. Vol. 3, N 3. pp. 8–30. 10. Baker R., Han G., Sarangkasiri S., DeMarco M., Turke C. et al. Clinical and dosimetric predictors of radiation pneumonitis in a large series of patients treated with stereotactic body radiation therapy to the lung. Int. J. Radiat. Oncol. Biol. Phys. 2013. Vol. 85, N 1. pp. 190–195. 11. Bocchino M., Agnese S., Fagone E., Svegliati S., Grieco D. et al. Reactive oxygen species are required for maintenance and differentiation of primary lung fibroblasts in idiopathic pulmonary fibrosis. PLoS One. 2010. Vol. 5, N 1. 14003 p. 12. Borie R., Tabeze L., Thabut G., Nunes H., Cottin V. et al. Prevalence and characteristics of TERT and TERC mutations in suspected genetic pulmonary fibrosis. Eur. Respir. J. 2016. Vol. 48, N 6. pp. 1721–1731. 13. Borst G.R., Ishikawa M., Nijkamp J., Hauptmann M., Shirato H. et al. Radiation pneumonitis in patients treated for malignant pulmonary lesions with hypofractionated radiation therapy. Radiother. Oncol. 2009. Vol. 91, N 3. pp. 307–313. 14. Bromet E.J., Havenaar J.M., Guey L.T. A 25 year retrospective review of the psychological consequences of the Chernobyl accident. Clin. Oncol. 2011. Vol. 23, N 4. pp. 297–305. 15. Brush J., Lipnick S.L., Phillips T., Sitko J., McDonald J.T. et al. Molecular mechanisms of late normal tissue injury. Semin. Radiat. Oncol. 2007. Vol. 17, N 2. pp. 121–130. 16. Burnette B., Weichselbaum R.R. Radiation as an immune modulator. Semin. Radiat. Oncol. 2013. Vol. 23, N 4. pp. 273–280. 17. Cappuccini F., Eldh T., Bruder D., Gereke M., Jastrow H. et al. New insights into the molecular pathology of radiation–induced pneumopathy. Radiother. Oncol. 2011. Vol. 101, N 1. pp. 86–92. 18. Chen H., Xiang H., Wu B., Zhang X., Li M. et al. Manganese superoxide dismutase gene modified mesenchymal stem cells attenuates acute radiation–induced lung injury. Hum. Gene Ther. 2016. N 4. pp. 517–529. 19. Claudia C. Advances in mechanisms of repair and remodeling in acute lung injury. Intensive Care Medicine. 2008. Vol. 34, N 4. pp. 619–630. 20. Davis B.K., Wen H., Ting J.P. The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu. Rev. Immunol. 2011. Vol. 29. pp. 707–735. 21. Diederich S. Chest CT for suspected pulmonary complications of oncologic therapies: how I review and report. Cancer Imaging. 2016. Vol. 16. 7 p. 22. Ding N.H., Li J.J., Sun L.Q. Molecular mechanisms and treatment of radiation–induced lung fibrosis. Curr. Drug Targets. 2013. Vol. 14, N 11. pp. 1347–1356. 23. Dorn P., Tieche C.C., Peng R.W., Froment L., Schmid R.A. et al. Schedule–dependent increased efficiency of pemetrexed–ionizing radiation combination therapy elicits a differential DNA damage response in lung cancer cells. Cancer Cell Int. 2016. Vol. 16, N 1. 66 p. 24. Epler G.R., Kelly E.M. Systematic review of postradiotherapy bronchiolitis obliterans organizing pneumonia in women with breast cancer. Oncologist. 2014. Vol. 19, N 12. pp. 1216–1226. 25. Fleckenstein K., Gauter–Fleckenstein B., Jackson I., Rabbani Z., Anscher M. et al. Using biological markers to predict risk of radiation injury. Semin. Radiat. Oncol. 2007. Vol. 17, N 2. pp. 89–98. 26. Franchi L., Eigenbrod T., Munoz–Planillo R., Nunez G. The inflammasome: a caspase–1–activation platform that regulates immune responses and disease pathogenesis. Nat. Immunol. 2009. Vol. 10, N 3. pp. 241–247. 27. Fujino M., Shirato H., Onishi H., Kawamura H., Takayama K. et al. Characteristics of patients who developed radiation pneumonitis requiring steroid therapy after stereotactic irradiation for lung tumors. Cancer J. 2006. Vol. 12, N 1. pp. 41–46. 28. Gao F., Fish B.L., Moulder J.E., Jacobs E.R., Medhora M. Enalapril mitigates radiation–induced pneumonitis and pulmonary fibrosis if started 35 days after whole–thorax irradiation. Radiat. Res. 2013. Vol. 180, N 5. pp. 546–552. 29. Garofalo M., Bennett A., Farese A.M., Harper J., Ward A. et al. The delayed pulmonary syndrome following acute high–dose irradiation: a rhesus macaque model. Health Phys. 2014. Vol. 106, N 1. pp. 56–72. 30. Ghafoori P., Marks L.B., Vujaskovic Z., Kelsey C.R. Radiation–induced lung injury. Assessment, management, and prevention. Oncology (Williston Park). 2008. Vol. 22, N 1. pp. 37–47. 31. Ghobadi G., Bartelds B., van der Veen S.J., Dickinson M.G., Brandenburg S. et al. Lung irradiation induces pulmonary vascular remodelling resembling pulmonary arterial hypertension. Thorax. 2012. Vol. 67, N 4. pp. 334–341. 32. Ghosh S.N., Wu Q., Mader M., Fish B.L., Moulder J.E. et al. Vascular injury after whole thoracic x–ray irradiation in the rat. Int. J. Radiat. Oncol. Biol. Phys. 2009. Vol. 74, N 1. pp. 192–199. 33. Goertz O., Poettgen C., Akbari A., Kolbenschlag J., Langer S. et al. New model for long–term investigations of cutaneous microcirculatory and inflammatory changes following irradiation. J. Radiat. Res. 2015. Vol. 56, N 3. pp. 456–461. 34. Gong H.Y., Hu W.G., Hu Q.Y., Li X.P., Song Q.B. Radiation–induced pulmonary injury accelerated pulmonary metastasis in a mouse model of breast cancer. Oncol. Lett. 2015. Vol. 10, N 6. pp. 3613–3618. 35. Groves A.M., Johnston C.J., Misra R.S., Williams J.P., Finkelstein J.N. Effects of IL–4 on pulmonary fibrosis and the accumulation and phenotype of macrophage subpopulations following thoracic irradiation. Int. J. Radiat. Biol. 2016. Vol. 92, N 12. pp. 754–765. 36. Hamada N., Fujimichi Y. Classification of radiation effects for dose limitation purposes: history, current situation and future prospects. J. Radiat. Res. 2014. Vol. 55, N 4. pp. 629–640. 37. Han G., Zhang H., Xie C.H., Zhou Y.F. Th2–like immune response in radiation–induced lung fibrosis. Oncol. Rep. 2011. Vol. 26, N 2. pp. 383–388. 38. Haston C.K., Begin M., Dorion G., Cory S.M. Distinct loci influence radiation–induced alveolitis from fibrosing alveolitis in the mouse. Cancer Res. 2007. Vol. 67, N 22. pp. 10796–10803. 39. Hirai Y., Kodama Y., Cullings H.M., Miyazawa C., Kanamura N. Electron spin resonance analysis of tooth enamel does not indicate exposure to large radiation doses in a large proportion of distally–exposed A–bomb survivors. Radiat. Res. 2011. Vol. 52. pp. 600–608. 40. Hiyama K., Tanimoto K., Nishimura Y., Tsugane M., Fukuba I. et al. Exploration of the genes responsible for unlimited proliferation of immortalized lung fibroblasts. Exp. Lung Res. 2008. Vol. 34, N 7. pp. 373–390. 41. Hong Z.Y, Eun S.H., Park K., Choi W.H., Lee J.I. et al. Development of a small animal model to simulate clinical stereotactic body radiotherapy–induced central and peripheral lung injuries. J. Radiat. Res. 2014. Vol. 55, N 4. pp. 648–657. 42. Hong Z.Y., Song K.H., Yoon J.H., Cho J., Story M.D. An experimental model–based exploration of cytokines in ablative radiation–induced lung injury in vivo and in vitro. Lung. 2015. Vol. 193, N 3. pp. 409–419. 43. Hu Y., Li J., Su X. Fatal pneumonitis associated with postoperative intensity–modulated radiotherapy in lung cancer: case report and review. Oncol. Lett. 2013. Vol. 5, N 2. pp. 714–716. 44. Jang S.S., Kim H.G., Han J.M., Lee J.S., Choi M.K. et al. Modulation of radiation–induced alterations in oxidative stress and cytokine expression in lung tissue by Panax ginseng extract. Phytother. Res. 2015. Vol. 29, N 2. pp. 201–209. 45. Jenkins P., Welsh A. Computed tomography appearance of early radiation injury to the lung: correlation with clinical and dosimetric factors. Int. J. Radiat. Oncol. Biol. Phys. 2011. Vol. 81, N 1. pp. 97–103. 46. Jiang X., Qu C., Chang P., Zhang C., Qu Y. et al. Intravenous delivery of adipose–derived mesenchymal stromal cells attenuates acute radiation–induced lung injury in rats. Cytotherapy. 2015. Vol. 17, N 5. pp. 560–570. 47. Kalash R., Berhane H., Au J., Rhieu B.H., Epperly M.W. et al. Differences in irradiated lung gene transcription between fibrosis–prone C57BL/6NHsd and fibrosis–resistant C3H/HeNHsd mice. In Vivo. 2014. Vol. 28, N 2. pp. 147–171. 48. Kano A., Ujita M., Kobayashi M., Sunakawa Y., Shirahama J. et al. Radiographic and CT features of radiation–induced organizing pneumonia syndrome after breast–conserving therapy. Jpn J. Radiol. 2012. Vol. 30, N 2. pp. 128–136. 49. Kerr G.D., Egbert S.D., Al–Nabulsi I., Bailiff I.K., Beck H.L. et al. Workshop report on atomic bomb dosimetry–review of dose related factors for the evaluation of exposures to residual radiation at Hiroshima and Nagasaki. Health Phys. 2015. Vol. 109, N 6. pp. 581–600. 50. Kerr G.D., Egbert S.D., Al–Nabulsi I., Beck H.L., Cullings H.M. et al. Workshop report on atomic bomb dosimetry–residual radiation exposure: recent research and suggestions for future studies. Health Phys. 2013. Vol. 105, N 2. pp. 140–149. 51. Khalil A.A., Hoffmann L., Moeller D.S., Farr K.P., Knap M.M. New dose constraint reduces radiation–induced fatal pneumonitis in locally advanced non–small cell lung cancer patients treated with intensity–modulated radiotherapy. Acta Oncol. 2015. Vol. 54, N 9. pp. 1343–1349. 52. Kim B.Y., Jin H., Lee Y.J., Kang G.Y., Cho J. et al. Focal exposure of limited lung volumes to high–dose irradiation down–regulated organ development–related functions and up–regulated the immune response in mouse pulmonary tissues. BMC Genet. 2016. Vol. 17. 29 p. 53. Li M., Abdollahi A., Grone H.J., Lipson K.E., Belka C. et al. Late treatment with imatinib mesylate ameliorates radiation–induced lung fibrosis in a mouse model. Radiat. Oncol. 2009. Vol. 4. 66 p. 54. Liang H., Deng L., Chmura S., Burnette B., Liadis N. et al. Radiation–induced equilibrium is a balance between tumor cell proliferation and T cell–mediated killing. J. Immunol. 2013. Vol. 190, N 11. pp. 5874–5881. 55. Liu Y., Xia T., Zhang W., Zhong Y., Zhang L. et al. Variations of circulating endothelial progenitor cells and transforming growth factor–beta–1 (TGF–β1) during thoracic radiotherapy are predictive for radiation pneumonitis. Radiat. Oncol. 2013. Vol. 8. 189 p. 56. Maddams J., Parkin D.M., Darby S.C. The cancer burden in the United Kingdom in 2007 due to radiotherapy. Int. J. Cancer. 2011. Vol. 129, N 12. pp. 2885–2893. 57. Maebayashi T., Ishibashi N., Aizawa T., Sakaguchi M., Sato T. et al. Radiation pneumonitis changes over time after stereotactic body radiation therapy for lung tumors: Post–treatment Cavity (Sunny–side–up Egg–like) Changes. Anticancer Res. 2016. Vol. 36, N 10. pp. 5563–5570. 58. Marples B., Downing L., Sawarynski K.E., Finkelstein J.N., Williams J.P. et al. Pulmonary injury after combined exposures to low–dose low–LET radiation and fungal spores. Radiat. Res. 2011. Vol. 175, N 4. pp. 501–509. 59. Mazeron R., Etienne–Mastroianni B., Perol D., Arpin D., Vincent M. et al. Predictive factors of late radiation fibrosis: a prospective study in non–small cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 2010. Vol. 77, N 1. pp. 38–43. 60. Medhora M., Gao F., Jacobs E.R., Moulder J.E. Radiation damage to the lung: mitigation by angiotensin–converting enzyme (ACE) inhibitors. Respirology. 2012. Vol. 17, N. 1. pp. 66–71. 61. Mehrad B., Strieter R.M. Fibrocytes and the pathogenesis of diffuse parenchymal lung disease. Fibrogenesis & Tissue Repair. 2012. Vol. 5, N 1. 22 p. 62. Molthen R.C., Wu Q., Fish B.L., Moulder J.E., Jacobs E.R. et al. Mitigation of radiation induced pulmonary vascular injury by delayed treatment with captopril. Respirology. 2012. Vol. 17, N 8. pp. 1261–1268. 63. Moore B.B., Hogaboam C.M. Murine models of pulmonary fibrosis. Am J. Physiol. Lung Cell. Mol. Physiol. 2008. Vol. 294. pp. 152–160. 64. Murofushi K.N., Oguchi M., Gosho M., Kozuka T., Sakurai H. Radiation–induced bronchiolitis obliterans organizing pneumonia (BOOP) syndrome in breast cancer patients is associated with age. Radiat Oncol. 2015. Vol. 10. 103 p. 65. Nuovo G.J., Garofalo M., Valeri N., Roulstone V., Volinia S. et al. Reovirus–associated reduction of microRNA–let–7d is related to the increased apoptotic death of cancer cells in clinical samples. Mod. Pathol. 2012. Vol. 25, N 10. pp. 1333–1344. 66. Ochiai S., Nomoto Y., Yamashita Y., Murashima S., Hasegawa D. et al. Radiation–induced organizing pneumonia after stereotactic body radiotherapy for lung tumor. J. Radiat. Res. 2015. Vol. 56, N 6. pp. 904–911. 67. Oie Y., Saito Y., Kato M., Ito F., Hattori H. et al. Relationship between radiation pneumonitis and organizing pneumonia after radiotherapy for breast cancer. Radiat. Oncol. 2013. Vol. 8. 56 p. 68. Palmer J.D., Zaorosky N.G., Witek M., Lu B. Molecular markers to predict clinical outcome and radiation–induced toxicity in lung cancer. J. Thorac. Dis. 2014. Vol. 6, N 4. pp. 387–398. 69. Park K.J., Oh Y.T., Kil W.J., Park W., Kang S.H. et al. Bronchoalveolar lavage findings of radiation induced lung damage in rats. J. Radiat. Res. 2009. Vol. 50, N 3. pp. 177–182. 70. Paun A., Haston C.K. Genomic and genome–wide association of susceptibility to radiation–induced fibrotic lung disease in mice. Radiother. Oncol. 2012. Vol. 105, N 3. pp. 350–357. 71. Paun A., Kunwar A., Haston C.K. Acute adaptive immune response correlates with late radiation–induced pulmonary fibrosis in mice. Radiat. Oncol. 2015. Vol. 10. 45 p. 72. Pietrofesa R.A., Solomides C.C., Christofidou–Solomidou M. Flaxseed mitigates acute oxidative lung damage in a mouse model of repeated radiation and hyperoxia exposure associated with space exploration. J. Pulm. Respir. Med. 2014. Vol. 4, N 6. pp. 215–224. 73. Porcel J.M., Azzopardi M., Koegelenberg C.F., Maldonado F. et al. The diagnosis of pleural effusions. Expert Rev. Respir. Med. 2015. Vol. 9, N 6. pp. 801–815. 74. Preston D.L., Ron E., Tokuoka S., Funamoto S., Nishi N. et al. Solid cancer incidence in atomic bomb survivors: 1958–1998. Radiat. Res. 2007. Vol. 168, N 1. pp. 1–64. 75. Rube C.E., Palm J., Erren M., Fleckenstein J., König J. et al. Cytokine plasma levels: reliable predictors for radiation pneumonitis? PLoS One. 2008. Vol. 3, N 8. 2898 p. 76. Ryerson C.J., Hartman T., Elicker B.M., Ley B., Lee J.S. et al. Clinical features and outcomes in combined pulmonary fibrosis and emphysema in idiopathic pulmonary fibrosis. Chest. 2013. Vol. 144, N 1. pp. 234–240. 77. Saintigny P., Burger J.A. Recent advances in non–small cell lung cancer biology and clinical management. Discov. Med. 2012. Vol. 13, N 71. pp. 287–297. 78. Saito–Fujita T., Iwakawa M., Nakamura E., Nakawatari M., Fujita H. et al. Attenuated lung fibrosis in interleukin 6 knock–out mice after C–ion irradiation to lung. J. Radiat. Res. 2011. Vol. 52, N 3. pp. 270–277. 79. Schallenkamp J.M., Miller R.C., Brinkmann D.H., Foote T., Garces Y.I. Incidence of radiation pneumonitis after thoracic irradiation: Dose–volume correlates. Int. J. Radiat. Oncol. Biol. Phys. 2007. Vol. 67, N 2. pp. 410–416. 80. Shank B. Toxicity due to total body irradiation. Hum. Radiat. Injury. 2010. N 1. pp. 133–139. 81. Shi A., Zhu G., Wu H., Yu R., Li F. et al. Analysis of clinical and dosimetric factors associated with severe acute radiation pneumonitis in patients with locally advanced non–small cell lung cancer treated with concurrent chemotherapy and intensity–modulated radiotherapy. Radiat. Oncol. 2010. Vol. 5. 35 p. 82. Siva S., MacManus M., Kron T., Best N., Smith J. et al. A pattern of early radiation–induced inflammatory cytokine expression is associated with lung toxicity in patients with non–small cell lung cancer. PLoS One. 2014. Vol. 9, N 10. 560 p. 83. Sohn S.H., Lee J.M., Park S., Yoo H., Kang J.W. et al. The inflammasome accelerates radiation–induced lung inflammation and fibrosis in mice. Environ. Toxicol. Pharmacol. 2015. Vol. 39, N 2. pp. 917–926. 84. Stewart F.A., Akleyev A.V., Hauer–Jensen M., Hendry J.H., Kleiman N.J. et al. ICRP Publication 118: ICRP Statement on tissue reactions, early and late effects of radiation in normal tissues and organs–threshold doses for tissue reactions in a radiation protection context. Ann. ICRP. 2012. Vol. 41, N 1/2. 322 p. 85. Terashima T., Iwami E., Chubachi S., Ikemura S., Nakajima T. et al. A case of small cell lung cancer treated with concurrent chemoradiotherapy with carboplatin plus etoposide in a hemodialysis patient. Gan To Kagaku Ryoho. 2016. Vol. 43, N 1. pp. 99–101. 86. Todd N.W., Luzina I.G., Atamas S.P. Molecular and cellular mechanisms of pulmonary fibrosis // Fibrogenesis & Tissue Repair. 2012. Vol. 5, N 1. 11 p. 87. Ulubay G., Kupeli E., Er Dedekargınoglu B., Savas Bozbas S., Alekberov M. et al. Postoperative pleural effusions after orthotopic heart transplant: cause, clinical manifestations, and course. Exp. Clin. Transplant. 2016. Vol. 14, N 3. pp. 125–129. 88. Uzbеkоv D., Hoshi M., Shiсhijо K., Сhаizhunusоvа N., Shаbdаrbаеvа D. et al. Rаdiаtiоn еffесts оn mоrphоfunсtiоnаl stаtе оf thе rеspirаtоry systеm. Astana medical journal. 2016. N 4 (90). pp. 56–62. 89. Uzbеkоv D., Shiсhijо K., Сhаizhunusоvа N., Shаbdаrbаеvа D., Sаyаkеnоv N. et al. Rаdiаtiоn еffесts оn thе pulmоnаry histоlоgiсаl struсturе оf еxpеrimеntаl rаts // XII Intеrnаtiоnаl sсiеntifiс–prасtiсаl соnfеrеnсе «Есоlоgy. Rаdiаtiоn. Hеаlth» dеdiсаtеd tо асаdеmiсiаn B. Аtсhаbаrоv аnd 25 yеаrs frоm thе dаtе оf сlоsing оf Sеmipаlаtinsk nuсlеаr tеst sitе. Sciеncе & Hеalthcarе. Sеmеy, 2016. 185 p. 90. Van der Veen S.J., Ghobadi G., de Boer R.A., Faber H., Cannon M.V. et al. ACE inhibition attenuates radiation–induced cardiopulmonary damage. Radiother. Oncol. 2015. Vol. 114, N 1. pp. 96–103. 91. Walkin L., Herrick S.E., Summers A., Brenchley P.E., Hoff C.M. et al. The role of mouse strain differences in the susceptibility to fibrosis: a systematic review. Fibrogenesis & Tissue Repair. 2013. Vol. 6, N 1. 18 p. 92. Wang D., Shi J., Liang S., Lu S., Qi X. et al. Dose–volume histogram parameters for predicting radiation pneumonitis using receiver operating characteristic curve. Clin. Transl. Oncol. 2013. Vol. 15, N 5. pp. 364–369. 93. Wang L.P., Wang Y.W., Wang B.Z., Sun G.M., Wang X.Y. et al. Expression of interleukin–17A in lung tissues of irradiated mice and the influence of dexamethasone. Scientific World Journal. 2014. Vol. 2014. 251067 p. 94. Westbury C.B., Yarnold J.R. Radiation fibrosis – current clinical and therapeutic perspectives. Clin. Oncol. (R. Coll. Radiol). 2012. Vol. 24, N 10. pp. 657–672. 95. Williams J.P., Brown S.L., Georges G.E., Hauer–Jensen M., Hill R.P. et al. Animal models for medical countermeasures to radiation exposure. Radiat. Res. 2010. Vol. 173, N 4. pp. 557–578. 96. Xie L., Zhou J., Zhang S., Chen Q., Lai R. et al. Integrating microRNA and mRNA expression profiles in response to radiation–induced injury in rat lung. Radiat. Oncol. 2014. Vol. 9. 111 p. 97. Xu L., Xiong S., Guo R., Yang Z., Wang Q. et al. Transforming growth factor β3 attenuates the development of radiation–induced pulmonary fibrosis in mice by decreasing fibrocyte recruitment and regulating IFN–γ/IL–4 balance. Immunol. Lett. 2014. Vol. 162, N 1 (A). pp. 27–33. 98. Yamada M., Kasagi F., Mimori Y., Miyachi T., Ohshita T. et al. Incidence of dementia among atomic–bomb survivors – radiation effects research foundation adult health study. J. Neurol. Sci. 2009. Vol. 281, N 1–2. pp. 11–14. 99. Yang S., Zhang M., Chen C., Cao Y., Tian Y. et al. Triptolide mitigates radiation–induced pulmonary fibrosis. Radiat. Res. 2015. Vol. 184, N 5. pp. 509–517. 100. Zhang R., Ghosh S.N., Zhu D., North P.E., Fish B.L. et al. Structural and functional alterations in the rat lung following whole thoracic irradiation with moderate doses: injury and recovery. Int. J. Radiat. Biol. 2008. Vol. 84, N 6. pp. 487–497.
Number of Views: 385

Key words:

Category of articles: Reviews

Bibliography link

Узбекoв Д.Е., Хоши М., Чайжунусова Н.Ж., Шабдарбаева Д.М., Саякенoв Н.Б. Радиационно–индуцированные повреждения легких. Обзор литературы / / Наука и Здравоохранение. 2016. № 6. С. 160-178. Uzbеkоv D.E., Hоshi M., Chaizhunusova N.Zh., Shаbdаrbаеvа D.M., Sayakenov N.B. Radiation–induced lung injury. Literature review. Nauka i Zdravookhranenie [Science & Healthcare]. 2016, 6, pp. 160-178. Узбекoв Д.Е., Хоши М., Чайжунусова Н.Ж., Шабдарбаева Д.М., Саякенoв Н.Б. Радиация әсерінен туындаған өкпе зақымданулары. Әдебиеттерге шолу / / Ғылым және Денсаулық сақтау. 2016. № 6. Б. 160-178.

Авторизируйтесь для отправки комментариев