MODERN CONCEPTS OF THE ROLE OF INFECTIOUS AGENTS IN THE DEVELOPMENT OF CARDIOVASCULAR DISEASES. LITERATURE REVIEW.
Introduction. Cardiovascular diseases (CVD) are the leading cause of death worldwide. The main cause for the development of CVD is atherosclerosis (AS). Despite a significant reduction in traditional risk factors, the incidence of CVD remains high. This fact indicates presence of unknown factors involved in the pathogenesis of AS. Since atherosclerosis is associated with a chronic inflammatory response, the participation of viral and bacterial infections in its development has been studied. The contribution of infectious agents to the development of atherosclerosis and, accordingly, CVD is becoming more recognizable and may become a potential therapeutic target. Purpose: to systematize and evaluate the contribution of infectious factors to the development and progression of atherosclerosis as a factor in cardiovascular catastrophes according to the literature. Search strategy: Search for publications was conducted in the databases PubMed, The СochraneLibrary, Medscape, and GoogleScholar. The search depth was 10 years from 2010 to 2020. Inclusion criteria: reports on randomized and cohort studies conducted in large populations; meta-analyzes and systematic reviews; articles in English and Russian. Exclusion criteria: articles describing single cases and series of cases; materials published before 2010, materials that do not have evidence, summaries of reports, abstracts and newspaper articles. During the search 147 sources were found. Ninety six of them were selected and analyzed for a detailed study. Results: An analysis was made of the connections of the infectious process and the development of atherosclerotic lesions of the vascular bed. The effect of various infectious agents on each stage of the development and destabilization of atherosclerotic plaque was determined, and the attempts at anti-infection therapy for CVD were evaluated. Conclusions: It was summarized that infection and carriage of pathogenic microorganisms affects the development and progression of atherosclerotic complications, cardiovascular diseases. However, anti-infection therapy in CVD in clinical trials did not show positive results.
Maira I. Madieva1, Guzyal D. Abilmazhinova1 1Department of Internal Medicine, Pavlodar branch of «Semey Medical University» NJSC", Pavlodar, Republic of Kazakhstan.
1. Бекбергенова Ж.Б., Умбетжанова А.Т. Оценка риска и профилактика сердечно-сосудистых заболеваний: адаптированное клиническое руководство. Республиканский центр развития здравоохранения РК, Нур-Султан, 2019. 72 с. 2. Купрюшин А. С., Чудаева Д. Г., Федорова М. Г., Латынова И. В., Вишнякова Ж. С., Купрюшина Н. В., Ефимов А.А. Современные представления о роли микроорганизмов в индуцировании и развитии атеросклероза (обзор) // Саратовский научно-медицинский журнал. 2016. № 12 (2). С. 113-117. 3. Мединформ. Медицинская статистика, 2018. URL: http://www.medinfo.kz (дата обращения 1.04.2020). 4. Adinolfi L.E., Restivo L., Zampino R., Guerrera B., Lonardo A., Ruggiero L., Riello F., Loria P., Florio A. Chronic HCV infection is a risk of atherosclerosis. Role of HCV and HCV-related steatosis // Atherosclerosis, 2012. Vol. 221. Issue 2. P. 496–502. 5. Afsar B., Vaziri N., Aslan G., Tarim K., Kanbay M. Gut hormones and gut microbiota: implications for kidney function and hypertension // J Am Soc Hypertens, 2016. № 10. P. 954–961. 6. Ahola T.L., Kantola I.M., Puukka P., Kattainen A., Klaukka T., Reunanen A., Jula A.M. Positive change in the utilization of antihypertensive and lipid-lowering drugs among adult CHD patients in Finland: results from a large national database between 2000 and 2006 // Eur J Cardiovasc Prev Rehabil., 2010. №. 17. P. 477–485. 7. Allayee H., Hazen S.L. Contribution of gut bacteria to lipid levels // Circ Res., 2015. № 117. P. 750–754. 8. Asia Pacific Cohort Studies C Impact of cigarette smoking on the relationship between body mass index and coronary heart disease: a pooled analysis of 3264 stroke and 2706 CHD events in 378579 individuals in the Asia Pacific region // BMC Public Health, 2009. № 9, P. 294. 9. de Andrade J. et al. The effect of thiamine deficiency on inflammation, oxidative stress and cellular migration in an experimental model of sepsis // J Inflamm (Lond), 2014. № 11. P. 11. 10. Blum A. Helicobacter pylori and atherosclerosis // Isr Med Assoc J., 2015. № 17. P. 396-402. 11. Cai Y., Kobayashi R., Hashizume-Takizawa T.K.-O.T. Porphyromonas gingivalis infection enhances Th17 responses for development of atherosclerosis // Arch Oral Biol, 2014. №. 59. P. 1183–1191. 12. Campbell L.A., Lee A.W., Rosenfeld M.E., Kuo C.C. Chlamydia pneumoniae induces expression of pro-atherogenic factors through activation of the lectin-like oxidized LDL receptor-1 // Pathog Dis., 2013. №. 69. P. 7195–7197. 13. Campbell L.A., Rosenfeld M.E. Infection and atherosclerosis development // Archives of Medical Research Journal, 2015. Vol. 46. Issue 5. P. 339-350. 14. Cassol E., Cassetta L., Alfano M., Poli G. Macrophage polarization and HIV-1 infection // J Leukoc Biol, 2010. № 87. P. 599–608. 15. Chattergoon M.A., Latanich R., Quinn J., Winter M.E., Buckheit 3rd R.W., Blankson J.N., Pardoll D., Cox A.L. HIV and HCV activate the inflammasome in monocytes and macrophages via endosomal Toll-like receptors without induction of type 1 interferon // PLoS Pathog, 2014. № 10(5). 16. Chistiakov D.A., Bobryshev Y.V., Kozarov E., Sobenin I.A., Orekhov A.N. Role of gut microbiota in the modulation of atherosclerosis-associated immune response // Front Microbiol., 2015. № 6. P. 671. 17. Du Y., Zhang G., Liu Z. Human cytomegalovirus infection and coronary heart disease: a systematic review // Virology journal, 2018. № 15(1). P. 31. 18. Filardo S., Di Pietro M., Farcomeni A., Schiavoni G., Sessa R. Chlamydia pneumoniae-mediated inflammation in atherosclerosis: a meta-analysis // Mediat Inflamm., 2015. № 2015. P. 378-658. 19. Frostegard J. Low level natural antibodies against phosphorylcholine: a novel risk marker and potential mechanism in atherosclerosis and cardiovascular disease // Clin Immunol, 2010. № 134. P. 47–54. 20. Fu J. et al. The gut microbiome contributes to a substantial proportion of the variation in blood lipids // Circ Res., 2015. № 117. P. 817–824. 21. Gao N., Yuan Z., Tang X., Zhou X., Zhao M., Liu L., Ji J., Xue F., Ning G., Zhao J. et al. Prevalence of CHD-related metabolic comorbidity of diabetes mellitus in northern Chinese adults: the REACTION study // J Diabetes Complicat., 2016. № 30. P. 199–205. 22. Gregory J.C. et al. Transmission of atherosclerosis susceptibility with gut microbial transplantation // J Biol Chem., 2015. № 290. P. 5647–5660. 23. Guo H., Gao J., Taxman D.J., Ting J.P.Y., Su L. HIV-1 infection induces interleukin-1b production via TLR8 protein-dependent and NLRP3 inflammasome mechanisms in human monocytes // J Biol Chem, 2014. № 289. P. 21716–21726. 24. Haidari M., Wyde P.R., Litovsky S., Vela D., Ali M., Casscells S.W., Madjid M. Influenza virus directly infects, inflames, and resides in the arteries of atherosclerotic and normal mice // Atherosclerosis, 2010. Vol.208. P. 90–96. 25. He C., Yang Z., Lu N.H. Helicobacter pylori-an infectious risk factor for atherosclerosis? // J Atheroscler Thromb, 2014. № 21. P. 1229–1242. 26. Hebsur S., Vakil E., Oetgen W.J., Kumar P.N., Lazarous D.F. Influenza and coronary artery disease: exploring a clinical association with myocardial infarction and analyzing the utility of vaccination in prevention of myocardial infarction // Cardiovasc Med, 2014. № 15. P. 168–175. 27. Heybar H., Alavi S.M., Farashahi Nejad M., Latifi M. Cytomegalovirus infection and atherosclerosis in candidate of coronary artery bypass graft // Jundishapur J Microbiol, 2015. № 8(3). 28. Hsu Y.C., Ho H.J., Huang Y.T., Wang H.H., Wu M.S., Lin J.T., Wu C.Y. Association between antiviral treatment and extrahepatic outcomes in patients with hepatitis C virus infection // Gut, 2015. № 64. P. 495–503. 29. Hsu Y.C., Lin J.T., Ho H.J., Kao Y.H., Huang Y.T., Hsiao N.W., Wu M.S., Liu Y.Y., Wu C.Y. Antiviral treatment for hepatitis C virus infection is associated with improved renal and cardiovascular outcomes in diabetic patients // Hepatology, 2014. № 59. P. 1293–1302. 30. Huang C.Y., Shih C.M., Tsao N.W., Lin Y.W., Shih C.C., Chiang K.H., Shyue S.K., ChangY.J., Hsieh C.K., Lin F.Y. The GroEL protein of Porphyromonas gingivalis regulates atherogenic phenomena in endothelial cells mediated by upregulating toll-like receptor 4 expression // Am J Transl Res, 2016. № 8. P. 384–404. 31. Jeong S.J., Ku N.S., Han S.H., Choi J.Y., Kim C.O., Song Y.G., Kim J.M. Anti-cytomegalovirus antibody levels are associated with carotid atherosclerosis and inflammatory cytokine production in elderly Koreans // Clin Chim Acta., 2015. № 445. P. 65–69. 32. Jie Z., Xia H., Zhong S.L., Feng Q., Li S., Liang S. The gut microbiome in atherosclerotic cardiovascular disease // Nat Commun., 2017. № 8(1). P. 845. 33. Kang M.Y., Hong Y.C. Inter-correlation between working hours, sleep duration, obesity, and 10-year risk for CHD // Am J Ind Med., 2016. № 59. P. 338–339. 34. Kang S.G., Chung W.C., Song S.W., Joo K.R., Lee H., Kang D., Lee J.S., Lee K.M. Risk of atherosclerosis and helicobacter pylori infection according to CD14 Promotor polymorphism in healthy Korean population // Gastroenterol Res Pract., 2013. № 2013. P. 570-597. 35. Karbach S.H. et al. Gut microbiota promote angiotensin II–Induced arterial hypertension and vascular dysfunction // J Am Heart Assoc., 2016. № 5.Р. 9. 36. Karbasi-Afshar R., Khedmat H., Izadi M. Helicobacter pylori infection and atherosclerosis: a systematic review // Acta Med Iran., 2015. № 53. P. 78–88. 37. Karlsson F.H. et al. Symptomatic atherosclerosis is associated with an altered gut metagenome // Nat Commun, 2012. № 3. P. 1245. 38. Karlsson F.H., Fak F., Nookaew I., Tremaroli V., Fagerberg B., Petranovic D. Symptomatic atherosclerosis is associated with an altered gut metagenome // Nat Commun., 2012. № 3. P. 1245. 39. Kazemian N., Mahmoudi M., Halperin F., Wu J.C., Pakpour S. Gut microbiota and cardiovascular disease: opportunities and challenges // Microbiome, 2020. № 8. P. 36-37. 40. Kim S. et al. Imbalance of gut microbiome and intestinal epithelial barrier dysfunction in patients with high blood pressure // Clin Sci (Lond), 2018. № 132. P. 701–718. 81 41. Kimura T., Tse K., Sette A., Ley K. Vaccination to modulate atherosclerosis // Autoimmunity, 2015. № 48. P. 152–160. 42. Koeth R.A., Wang Z., Levison B.S., Buffa J.A., Org E., Sheehy B.T. Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis // Nat Med., 2013. № 19(5). P. 576–585. 43. Kreutmayer S., Csordas A., Kern J., Maass V., Almanzar G., Offterdinger M., Ollinger R., Maass M., Wick G. Chlamydia pneumoniae infection acts as an endothelial stressor with the potential to initiate the earliest heat shock protein 60-dependent inflammatory stage of atherosclerosis // Cell Stress Chaperones, 2013. № 18. P. 259–268. 44. Kucharska-Newton A., Griswold M., Yao Z.H., Foraker R., Rose K., Rosamond W., Wagenknecht L., Koton S., Pompeii L., Windham B.G. Cardiovascular disease and patterns of change in functional status over 15 years: findings from the atherosclerosis risk in communities (ARIC) study // J Am Heart Assoc., 2017. № 6(3). 45. Kwagyan J., Retta T.M., Ketete M., Bettencourt C.N., Maqbool A.R., Xu S., Randall O.S. Obesity and cardiovascular diseases in a high-risk population: evidence-based approach to CHD risk reduction // Ethn Dis., 2015. № 25. P. 208–213. 46. Lebedeva A.M., Shpektor A.V., Vasilieva E.Y., Margolis L.B. Cytomegalovirus Infection in Cardiovascular Diseases // Biochemistry Moscow, 2018. № 83. P. 1437–1447. 47. Lei L., Li H., Yan F., Li Y., Xiao Y. Porphyromonas gingivalis lipopolysaccharide alters atherosclerotic-related gene expression in oxidized low-density-lipoprotein-induced macrophages and foam cells // J Periodontal Res, 2011. № 46. P. 427–437. 48. Li X.S., Obeid S., Klingenberg R., Gencer B., Mach F., Raber L. Gut microbiota-dependent trimethylamine N-oxide in acute coronary syndromes: a prognostic marker for incident cardiovascular events beyond traditional risk factors // Eur Heart J., 2017. № 38(11). P. 814–824. 49. Lin G.M., Li Y.H., Lai C.P., Lin C.L., Wang J.H. The obesity-mortality paradox in elderly patients with angiographic coronary artery disease: a report from the ET-CHD registry // Acta Cardiol., 2015. № 70. P. 479–486. 50. Lockyer M. Women with diabetes at greater risk of CHD than men // Practitioner, 2014. № 258. P. 7 51. Logue J. Obesity is an independent risk factor for death from CHD // Practitioner, 2011. № 255. P. 5. 52. Louboutin J-P., Agrawal L., Reyes BAS., Van Bockstaele E.J., Strayer D.S. HIV-1 gp120-induced injury to the blood-brain barrier: role of metalloproteinases 2 and 9 and relationship to oxidative stress // J Neuropathol Exp Neurol, 2010. № 69. P. 801–816. 53. Lyte M. Probiotics function mechanistically as delivery vehicles for neuroactive compounds: microbial endocrinology in the design and use of probiotics // Bioessays, 2011. № 33. P. 574–581. 54. Mahmoodpoor F., Saadat Y.R., Barzegari A., Ardalan M., Vahed S.Z. The impact of gut microbiota on kidney function and pathogenesis // Biomed Pharmacother, 2017. № 93. P. 412–419. 55. Matey-Hernandez M.L. et al. Genetic and microbiome influence on lipid metabolism and dyslipidemia // Physiol Genomics, 2018. № 50. P. 117–26. 56. Mitra S. et al. In silico analyses of metagenomes from human atherosclerotic plaque samples // Microbiome, 2015. № 3. P. 38. 57. Naga Venkata K. Pothineni, Swathi Subramany, Kevin Kuriakose, Lily F. Shirazi, Francesco Romeo, Prediman K. Shah, Jawahar L. Mehta, Liuba P., Muhlestein J.B., Rothstein N.M., Blessing E., Madan M., Amar S., Ayada K., Miyamoto T., Koizumi Y., Caligiuri G. Infections, atherosclerosis, and coronary heart disease. Review // European Heart Journal, 2017. Vol. 38. Issue 4. P. 3195–3201. 58. Nakaya K., Ikewaki K. Microbiota and HDL metabolism (Part 1) // Curr Opin Lipidol., 2018. № 29: P. 18–23. 59. Nakaya K., Ikewaki K. Microbiota and HDL metabolism (Part 2) // Curr Opin Lipidol, 2018. № 29. P. 23-27. 60. Pant S., Deshmukh A., GuruMurthy G. S., Pothineni N. V., Watts T. E., Romeo F., Mehta J.L. // Inflammation and Atherosclerosis—Revisited. Journal of Cardiovascular Pharmacology and Therapeutics, 2014. № 19(2). P/ 170–178. 61. Patil K., Campbell L.A., Rosenfeld M.E., Paik J., Brabb T., O'Brien K.D., Maggio-Price L., Hsu C.C. Effects of Murine Norovirus on Chlamydia pneumoniae-accelerated atherosclerosis in ApoE(−/−) mice // Comp Med., 2016. № 66. P. 188–196. 62. Phrommintikul A., Kuanprasert S., Wongcharoen W., Kanjanavanit R., Chaiwarith R., Sukonthasarn A. Influenza vaccination reduces cardiovascular events in patients with acute coronary syndrome // Eur Heart J., 2011. № 32. P. 1730–1735. 63. Pisano E. A different microbial signature in plaque and gut of patients presenting with ACS: a possible role for coronary instability // ESC Congress, Paris, 31 August, 2019. 64. Rosenfeld M.E. Inflammation and atherosclerosis: direct versus indirect mechanisms // Curr Opin Pharmacol Journal, 2013. № 13. P. 154–160. 65. Shah P.K., Chyu K.Y., Dimayuga P.C., Nilsson J. Vaccine for atherosclerosis // J Am Coll Cardiol, 2014. № 64. P. 2779–2791. 66. Shimizu R., Torii H., Yasuda D., Hiraoka Y., Furukawa Y., Yoshimoto A., Iwakura T., Matsuoka N., Tomii K., Kohara N. et al. Comparison of serum lipid management between elderly and non-elderly patients with and without coronary heart disease (CHD) // Prev Med Rep., 2016. № 4. P. 192–198. 67. Smith C., Sabin C.A., Lundgren J.D., Thiebaut R., Weber R., Law M., Monforte A., Kirk O., FriisMoller N., Phillips A., Reiss P., El Sadr W., Pradier C., Worm S.W. Factors associated with specific causes of death amongst HIV-positive individuals in the D:A:D Study // AIDS, 2010. № 24. P. 1537–1548. 68. Sonnenburg J.L., Backhed F. Diet-microbiota interactions as moderators of human metabolism // Nature, 2016. № 535. P. 56–64. 69. Sorrentino R., Yilmaz A., Schubert K., Crother T.R., Pinto A., Shimada K., Arditi M., Chen S. A single infection with Chlamydia pneumoniae is sufficient to exacerbate atherosclerosis in ApoE deficient mice // Cell Immunol., 2015. № 294. P. 25–32. 70. Southerland J.H., Moss K., Taylor G.W., Beck J.D., Pankow J., Gangula P.R., Offenbacher S. Periodontitis and diabetes associations with measures of atherosclerosis and CHD // Atherosclerosis, 2012. № 222. P. 196–201. 71. Tang W.H., Kitai T., Hazen S.L. Gut microbiota in cardiovascular health and disease // Circ Res., 2017. № 120. P. 1183–1196. 72. Tang W.H., Wang Z., Kennedy D.J., Wu Y., Buffa J.A., Agatisa-Boyle B. Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease // Circ Res., 2015. № 116(3). P. 448–455. 73. Tang W.H., Wang Z., Levison B.S., Koeth R.A., Britt E.B., Fu X. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk // N Engl J Med., 2013. № 368(17). P. 1575–1584. 74. Tang W.H.W., Hazen S.L. The contributory role of gut microbiota in cardiovascular disease // J Clin Invest., 2014. № 124. P. 4204–4211. 75. Theodoropoulos K., Mennuni M.G., Sartori S., Meelu O.A., Yu J., Baber U., Stefanini G.G., Mastoris I., Moreno P., Dangas G.D., Mehran R., Sharma S.K., Kini A.S. Quantitative angiographic characterisation of coronary artery disease in patients with human immunodeficiency virus (HIV) infection undergoing percutaneous coronary intervention // EuroIntervention, 2017. № 12. P. 1757–1765. 76. Tomoya Yamashita, Takuo Emoto, Naoto Sasaki, Ken-ichi Hirata. Gut Microbiota and Coronary Artery Disease // International Heart Journal, 2016. Vol. 57 Issue 6 P. 663-671. 77. Troseid M. Gut microbiota and acute coronary syndromes: ready for use in the emergency room? // Eur Heart J., 2017. № 38(11). P. 825–827. 78. Trøseid M., Andersen G.Ø., Broch K., Hov J.R. The gut microbiome in coronary artery disease and heart failure: Current knowledge and future directions // EBioMedicine, 2020. № 52. P. 102-649. 79. Tseng H.F., Slezak J.M., Quinn V.P., Sy L.S., Van den Eeden S.K., Jacobsen S.J. Pneumococcal vaccination and risk of acute myocardial infarction and stroke in men // Jama, 2010. № 303. P. 1699–1706. 80. Tuomisto S., Huhtala H., Martiskainen M., Goebeler S., Lehtimäki T., Karhunen PJ. Age-dependent association of gut bacteria with coronary atherosclerosis: Tampere Sudden Death Study // PLoS One. 2019. № 14(8). 81. Udell J.A., Zawi R., Bhatt D.L., Keshtkar-Jahromi M., Gaughran F., Phrommintikul A., Ciszewski A., Vakili H., Hoffman E.B., Farkouh M.E., Cannon C.P. Association between influenza vaccination and cardiovascular outcomes in high-risk patients: a meta-analysis // JAMA, 2013. № 310. P. 1711–1720. 82. Wang Z., Cai J., Zhang M., Wang X., Chi H., Feng H., Yang X. Positive expression of human cytomegalovirus Phosphoprotein 65 in atherosclerosis // Biomed Res Int., 2016. № 2016. Р.7. 83. Wang Z., Klipfell E., Bennett B.J., Koeth R., Levison B.S., Dugar B. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease // Nature, 2011. № 472(7341). P. 57–63. 84. Weber C., Shantsila E., Hristov M., Caligiuri G., Guzik T., Heine G.H., Hoefer I.E., Monaco C., Peter K., Rainger E. et al. Role and analysis of monocyte subsets in cardiovascular disease // Joint consensus document of the European Society of Cardiology (ESC) working groups “Atherosclerosis & Vascular Biology” and “thrombosis” Thromb Haemost, 2016. № 116. P. 626–637. 85. World Health Organization. URL: who.int>gho/publications/world_health., 2017/en/ 1 (дата обращения 1.04.2020). 86. Xu Y., Wang Q., Liu Y., Cui R., Lu K., Zhao Y. Association between helicobacter pylori infection and carotid atherosclerosis in patients with vascular dementia // J Neurol Sci., 2016. № 362. P. 73–77. 87. Yamaguchi Y., Kurita-Ochiai T., Kobayashi R., Suzuki T., Ando T. Activation of the NLRP3 inflammasome in Porphyromonas gingivalis-accelerated atherosclerosis // Pathog Dis, 2015; Р.73. 88. Yang T. et al. Gut dysbiosis is linked to hypertension // Hypertension, 2015. № 65. P.1331–40. 89. Yazouli L.E., Criscuolo A., Hejaji H., Bouaaza M., Elmdaghri N., Alami A.A., Amraoui A., Dakka N., Radouani F. Molecular characterization of Chlamydia pneumoniae associated to atherosclerosis // Pathog Dis., 2017. № 75. P.4. 90. Yin J. et al. Dysbiosis of gut microbiota with reduced trimethylamine-N-oxide level in patients with large-artery atherosclerotic stroke or transient ischemic attack // J Am Heart Assoc., 2015. № 4. Р 11. 91. Zafiratos M.T., Manam S., Henderson K.K., Ramsey K.H., Murthy A.K. CD8+ T cells mediate Chlamydia pneumoniae-induced atherosclerosis in mice // Pathog Dis., 2015. № 73(7). 92. Zhang J., Liu Y.Y., Sun H.L., Li S., Xiong H.R., Yang Z.Q., Xiang G.D., Jiang X.J. High human cytomegalovirus IgG level is associated with increased incidence of diabetic atherosclerosis in type 2 diabetes mellitus patients // Med Sci Monit., 2015. № 21. P. 4102–4110. 93. Zhao X., Bu D.X., Hayfron K., Pinkerton K.E., Bevins C.L., Lichtman A., Wiedeman J. A combination of secondhand cigarette smoke and Chlamydia pneumoniae accelerates atherosclerosis // Atherosclerosis, 2012. № 222. P. 59–66. 94. Zhou X., Li J., Guo J., Geng B., Ji W., Zhao Q. Gut-dependent microbial translocation induces inflammation and cardiovascular events after ST-elevation myocardial infarction // Microbiome, 2018. № 6(1). P. 66. 95. Zhu Q., Gao R., Zhang Y., Pan D., Zhu Y., Zhang X. Dysbiosis signatures of gut microbiota in coronary artery disease // Physiol Genomics, 2018. № 50(10). P. 893–903. 96. Zhu W., Gregory J.C., Org E., Buffa J.A., Gupta N., Wang Z. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk // Cell., 2016. № 165(1). P. 111–124. References: 1. Bekbergenowa Zh.B., Umbetzhanowa A.T. Otsenka ricka i provilaktika cerdetschno-cocudictykh zabolewanii: adaptirowannoe klinitscheckoe rukowodctwo [Risk Assessment and Cardiovascular Disease Prevention: Adapted Clinical Guidelines]. Recpublikanckii tsentr raswitiya zdrawookhraneniya RK [Center for Health Development of the Republic of Kazakhstan], Nur-Cultan, 2019. 72 p. [in Russian] 2. Kuprjuschin A. C., Tschudaewa D. G., Vedorowa M. G., Latynowa I. W., Wischnjakowa Zh. C., Kuprjuschina N. W., Evimow A.A. Cowremennye predctawleniya o roli mikroorganizmow w indutsirowanii i razwitii aterockleroza (obzor) [Modern views on the influence of microorganisms in the induction and development of atherosclerosis (review)]. Caratowckii nautschno-meditsinckii zhurnal [Saratov Journal of Medical Scientific Research] 2016. № 12 (2). P. 113-117. [in Russian] 3. Medinvorm. Meditsinckaya ctatictika [Medinform. Medical statistics] 2018. URL: http://www.medinfo.kz (accessed 1.04.2020). [in Russian]
Number of Views: 211

Key words:

Bibliography link

Madieva M.I., Abilmazhinova G.D. Modern concepts of the role of infectious agents in the development of cardiovascular diseases. Literature review // Nauka i Zdravookhranenie [Science & Healthcare]. 2020, (Vol.22) 3, pp. 42-54. doi:10.34689/SH.2020.22.3.007

Авторизируйтесь для отправки комментариев