EXPLORING THE ROLE OF miRNA’S IN DRUG-RESISTANT EPILEPSY. A LITERATURE REVIEW
Background: Drug-resistant epilepsy is a complex clinical problem with a multifactorial basis, including both environmental and genetic factors, affecting one in three patients. Understanding the genetic factors underlying this resistance may improve prognosis and support the development of new targeted therapies. This systematic review examines the potential of microRNA (miRNA)-based therapies in overcoming pharmacoresistance, exploring their role in modulating epileptogenic processes and serving as biomarkers for personalized treatment.
Aim: The aim of this study is to explore the important role of miRNA expression in the development of drug-resistant epilepsy by conducting a systematic review using databases such as Scopus, PubMed, Google Scholar, Lilacs, and Cuiden.
Search strategy: A systematic review of the literature was conducted using the Scopus, PubMed, Google Scholar, and SciVerse databases. Data from news articles, press releases, or websites were excluded. The search covered the last 5 years (2019–2024) and was performed in PubMed, Scopus, and Web of Science databases. Relevant articles were cited, focusing on topics closely related to the subject of this study. The literature review specifically investigated the role of miRNA in drug-resistant epilepsy and included open-access review articles in the field of epilepsy. The article was prepared as part of a study funded by the Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan (Grant No. AP23489425).
Results: During the open-access literature search, 112 articles in English were identified. Duplicate publications, animal studies, and publications in languages other than English were excluded from the evaluation. After careful review, 32 articles were selected for full analysis.
Conclusion: Expanding research on the heritability of drug-resistant epilepsy through miRNA studies, particularly in Kazakhstan, will facilitate early diagnosis, improve treatment approaches, and ultimately enhance patient quality of life.
Nurdinov Nursultan Seisenbaiuly - PhD, Senior Lecturer of «Fundamental Medical Sciences» department, Khoja Akhmet Yassawi International Kazakh-Turkish University. E-mail: nursultan.nurdinov@ayu.edu.kz; Phone: +77053787891, ORCID 0000-0001-5341-7211
Abilov Talgar Satybayuly - Candidate of Medical Sciences, Department of Microbiology, Virology and Immunology, Faculty of Medicine, Rector of Marat Ospanov West Kazakhstan Medical University, Aktobe, Kazakhstan, E-mail: abilovtalgar@gmail.com, Phone: +7 702 227 2813 ORCID 0009-0001-0390-0966
Sadykova Karlygash Zharylkasynovna - PhD, head of «Special clinic subjects» department, Khoja Akhmet Yassawi International Kazakh-Turkish University. E-mail: karlygash.sadykova@ayu.edu.kz Phone: +7 707 731 64 76, ORCID 0000-0002-9120-8565
Nuskabaeva Gulnaz Orazbekovna - Candidate of medical sciences, associate professor, Dean of the «Faculty of Medicine», Khoja Akhmet Yassawi International Kazakh-Turkish University; E-mail: nuskabayeva.gulnaz@ayu.edu.kz; Phone: +77052853131. ORCID 0000-0003-2139-3221
Zharkynbekova Nazira Asanovna - Candidate of medical sciences, Professor, Department of Neurology, Psychiatry, Rehabilitation and Neurosurgery, Faculty of Medicine, South Kazakhstan Medical Academy, E-mail: nazirazhar@mail.ru;
Phone: +77752135887; ORCID 0000-0002-5069-1562
Oshibayeva Ainash Esimbekovna - Candidate of medical sciences, associate professor, vice Rector for Science and Strategic Development of the Khoja Akhmet Yassawi International Kazakh-Turkish University, Turkistan, Kazakhstan
E-mail: ainash.oshibayeva@ayu.edu.kz, Phone: +77017170634, ORCID 0000-0002-5655-5465
Aimakhanov Maksat Sakenuly - Senior Lecturer of «Fundamental Sciences» department, Khoja Akhmet Yassawi International Kazakh-Turkish University, E-mail: maksat.aimakhanov@ayu.edu.kz; Phone: +77785356852; ORCID 0000-0002-3295-3493
*Correspondence author:
Doszhanov Islamkhan Azimkhanuly - 1st year doctoral student on the educational program D141- Medicine (8D10110-«Medicine»), Khoja Akhmet Yassawi International Kazakh-Turkish University. Turkistan, Kazakhstan, ORCID 0009-0008-7498-1880
Post address: Republic of Kazakhstan, 071400, Turkistan, Kazakhstan, Abay Street 103,
E-mail: islamkhan.doszhanov@ayu.edu.kz;
Phone: +7 747 855 26 96
1. Liu J. et al. Status of epilepsy in the tropics: An overlooked perspective Jiaqi. 2022. vol. 8, no. 1, pp. 32–45, doi: 10.1002/epi4.12686.
2. Organista-Juárez D., Jiménez A., Rocha L., Alonso-Vanegas M., et al. Differential expression of miR-34a, 451, 1260, 1275 and 1298 in the neocortex of patients with mesial temporal lobe epilepsy, Epilepsy Res., vol. 157, May, p. 106188, 2019, doi: 10.1016/j.eplepsyres.2019.106188.
3. Jimenez-Mateos E. et al. microRNA targeting of the P2X7 purinoceptor opposes a contralateral epileptogenic focus in the hippocampus. Sci Rep., vol. 3, no. 5, p. 17486, 2015.
4. Scheffer I.E. et al. ILAE classification of the epilepsies: position paper of the ILAE Commission for Classification and Terminology. Zeitschrift fur Epileptol., vol.31, no.4, pp.296–306, 2018, doi:10.1007/s10309-018-0218-6.
5. Kalilani L., Sun X., Pelgrims B., Noack‐Rink M., Villanueva V. The epidemiology of drug‐resistant epilepsy: A systematic review and meta‐analysis, Epilepsia, vol. 59, no. 12, pp. 2179–2193, Dec. 2018, doi: 10.1111/epi.14596.
6. Cui L. et al. A functional polymorphism of the microRNA-146a gene is associated with susceptibility to drug-resistant epilepsy and seizures frequency, Seizure, vol. 27, pp. 60–65, 2015, doi: 10.1016/j.seizure.2015.02.032.
7. Boschiero M.N. et al. The single nucleotide variant n.60G>C in the microRNA-146a associated with susceptibility to drug-resistant epilepsy, Epilepsy Res., vol. 162, p. 106305, May 2020, doi: 10.1016/j.eplepsyres.2020.106305.
8. Wang L. et al. microRNA-139-5p confers sensitivity to antiepileptic drugs in refractory epilepsy by inhibition of MRP1. Apr. 2020, vol. 26, no. 4, pp. 465–474, doi: 10.1111/cns.13268.
9. Lu T.X., Rothenberg M.E. MicroRNA. J. Allergy Clin. Immunol., vol. 141, no. 4, pp. 1202–1207, Apr. 2018, doi: 10.1016/j.jaci.2017.08.034.
10. O’Brien J., Hayder H., Zayed Y., Peng C., Overview of microRNA biogenesis, mechanisms of actions, and circulation, 2018. №402, V.9 р.9:402. doi: 10.3389/fendo.2018.00402.
11. Hauser R.M., Henshall D.C., Lubin F.D. The Epigenetics of Epilepsy and Its Progression, Apr.2018. vol. 24, no. 2, pp. 186–200, doi: 10.1177/1073858417705840.
12. Xie G., Chen H., He C., Hu S., Xiao X.,. Luo Q. The dysregulation of miRNAs in epilepsy and their regulatory role in inflammation and apoptosis, Funct. Integr. Genomics, vol. 23, no. 3, p. 287, Sep. 2023, doi: 10.1007/s10142-023-01220-y.
13. Heiland M. et al. MicroRNA-335-5p suppresses voltage-gated sodium channel expression and may be a target for seizure control, Proc. Natl. Acad. Sci., vol. 120, no. 30, Jul. 2023, doi: 10.1073/pnas.2216658120.
14. Aronica E. et al. Expression pattern of miR-146a, an inflammation-associated microRNA, in experimental and human temporal lobe epilepsy, Mar. 2010. vol. 31, no. 6, pp. 1100–1107, doi: 10.1111/j.1460-9568.2010.07122.x.
15. Sano T., Reynolds J.P., Jimenez-Mateos E.M., Matsushima S., Taki W., Henshall D.C. MicroRNA-34a upregulation during seizure-induced neuronal death. Mar. 2012, vol. 3, no. 3, pp. e287–e287, doi: 10.1038/cddis.2012.23.
16. Jimenez-Mateos E.M. et al. MiRNA expression profile after status epilepticus and hippocampal neuroprotection by targeting miR-132. Nov. 2011, vol. 179, no. 5, pp. 2519–2532, doi: 10.1016/j.ajpath.2011.07.036.
17. Suberbielle E. et al. MicroRNA-128 governs neuronal excitability and motor behavior in mice, Nat. Commun., vol. 6, no. 6163, pp. 1–14, 2015. http://dx.doi.org/10.1038/ncomms9897
18. Jimenez-Mateos E.M. et al. Silencing microRNA-134 produces neuroprotective and prolonged seizure-suppressive effects, Nat. Med., vol. 18, no. 7, pp. 1087–1094, Jul. 2012, doi: 10.1038/nm.2834.
19. Srivastava A., Dixit A.B., Banerjee J., Tripathi M., Sarat Chandra P. Role of inflammation and its miRNA based regulation in epilepsy: Implications for therapy. Jan. 2016, vol. 452, pp. 1–9, doi: 10.1016/j.cca.2015.10.023.
20. de Ronde M.W.J., Ruijter J.M., Moerland P.D., Eсreemers. E., Pinto-Sietsma S.J. Study Design and qPCR Data Analysis Guidelines for Reliable Circulating miRNA Biomarker Experiments: A Review, Clin. Chem., vol. 64, no. 9, pp. 1308–1318, Sep. 2018, doi: 10.1373/clinchem.2017.285288.
21. Shizu R., Shindo S., Yoshida T., MicroRNA-122 down-regulation is involved in phenobarbital-mediated activation of the constitutive androstane receptor. Jul. 2012, vol.7, no.7, p.e41291, doi: 10.1371/journal.pone.0041291.
22. Wang Y. et al. Circulating MicroRNAs From Plasma Small Extracellular Vesicles as Potential Diagnostic Biomarkers in Pediatric Epilepsy and Drug-Resistant Epilepsy, Front. Mol. Neurosci., vol. 15, Feb. 2022, doi: 10.3389/fnmol.2022.823802.
23. Zhou R. et al. Evidence for Selective microRNAs and Their Effectors as Common Long-Term Targets for the Actions of Mood Stabilizers, Neuropsychopharmacology, vol. 34, №6, pp. 1395–1405, May 2009, doi: 10.1038/npp.2008.131.
24. Zucchini S. et al. Identification of miRNAs differentially expressed in human epilepsy with or without granule cell pathology. Aug. 2014, vol. 9, no. 8, p. e105521, doi: 10.1371/journal.pone.0105521.
25. De Matteis M. et al. Circulating miRNAs expression profiling in drug-resistant epilepsy: Up-regulation of miR-301a-3p in a case of sudden unexpected death, Leg. Med., vol. 31, pp. 7–9, Mar. 2018, doi: 10.1016/j.legalmed.2017.12.003.
26. Bencurova P. et al. MicroRNA and mesial temporal lobe epilepsy with hippocampal sclerosis: Whole miRNome profiling of human hippocampus. Epilepsia, vol. 58, no. 10, pp. 1782–1793, Oct. 2017, doi: 10.1111/epi.13870.
27. Che N. et al. Aberrant Expression of miR-323a-5p in Patients with Refractory Epilepsy Caused by Focal Cortical Dysplasia. Jan.2017, vol.21, no.1, pp.3–9, doi: 10.1089/gtmb.2016.0096.
28. Wang X. et al. Serum MicroRNA-4521 is a Potential Biomarker for Focal Cortical Dysplasia with Refractory Epilepsy, Neurochem. Res., vol. 41, no. 4, pp. 905–912, Apr. 2016, doi: 10.1007/s11064-015-1773-0.
29. Sun Y. et al. Expression of microRNA-129-2-3p and microRNA-935 in plasma and brain tissue of human refractory epilepsy, Epilepsy Res., vol. 127, no. 127, pp. 276–283, Nov. 2016, doi: 10.1016/j.eplepsyres.2016.09.016.
30. Li Y. et al. Aberrant expression of miR-153 is associated with overexpression of hypoxia-inducible factor-1α in refractory epilepsy. Aug. 2016, vol. 6, no. 1, p. 32091, doi: 10.1038/srep32091.
31. Gong G.H., An F.M., Wang Y., Bian M., Wang D., Wei C.X. MiR-153 regulates expression of hypoxia-inducible factor-1a in refractory epilepsy. Feb. 2018, vol. 9, no. 9, pp. 8542–8547, doi: 10.18632/oncotarget.24012.
32. Zorin R.A., Zhadnov V.A., et al. The heterogeneity of patients with epilepsy in terms of psychological characteristics, quality of life, and a response to anticonvulsant therapy, Neurol. Neuropsychiatry, Psychosom., vol. 9, no. 1S, pp. 58–63, Jan. 2017, doi: 10.14412/2074-2711-2017-1S-58-63.
Количество просмотров: 140
Категория статей:
Обзор литературы
Библиографическая ссылка
Doszhanov I.A., Nurdinov N.S., Abilov T.S., Sadykova K.Zh., Nuskabayeva G.O., Zharkynbekova N.A., Oshibayeva A.E., Aimakhanov M.S. Exploring the Role of miRNA’s in drug-resistant epilepsy: a literature review // Nauka i Zdravookhranenie [Science & Healthcare]. 2025. Vol.27 (1), pp. 167-173. doi 10.34689/SH.2024.27.1.020Похожие публикации:
ANALYSIS OF ANTIBIOTIC PRESCRIBING PRACTICES IN PRIMARY HEALTH CARE SETTINGS. PART I
ТЕНДЕНЦИИ ЗАБОЛЕВАЕМОСТИ ИНФЕКЦИОННОГО ЭНДОКАРДИТА ПОСЛЕ ОБНОВЛЕНИЯ МЕЖДУНАРОДНЫХ РУКОВОДСТВУЮЩИХ ПРИНЦИПОВ. ОБЗОР ЛИТЕРАТУРЫ
СРАВНЕНИЕ МЕТОДОВ МОДЕЛИРОВАНИЯ РЕЦЕССИИ ДЕСНЫ НА ЛАБОРАТОРНЫХ ЖИВОТНЫХ
THE ROLE OF ESSENTIAL AND TOXIC TRACE ELEMENTS IN THE DEVELOPMENT OF KIDNEY STONE DISEASE. LITERATURE REVIEW
CLINICAL AND PATHOGENETIC FEATURES OF INFLAMMATORY BOWEL DISEASES: A LITERATURE REVIEW Aigerim B. Japparkulova1, https://orcid.org/0009-0006-8841-2051