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Abstract

Relevance: The application of artificial intelligence (Al) in clinical practice opens new opportunities to improve diagnostic
and prognostic accuracy in rheumatology, a field characterized by high disease heterogeneity and the complexity of
interpreting visual and clinical data

Search strategy: An analysis was conducted on 58 publications selected from 467 relevant sources (2015-2025),
identified through PubMed, Google Scholar, and CyberLeninka databases. Included were original studies and review articles
focused on the use of machine learning and deep learning methods in rheumatology.

Results: Al is increasingly being implemented to address tasks related to early diagnosis, disease course prediction, and
personalized therapy selection in rheumatoid arthritis, spondyloarthritis, systemic lupus erythematosus, and osteoarthritis.
Convolutional neural networks, multi-omics approaches, and adaptive prediction models were found to be the most effective,
demonstrating high accuracy (with AUC values up to 0.85). Despite this potential, clinical integration remains limited due to
small training datasets, the need for external validation, and insufficient model standardization.

Conclusions: Al holds significant practical value in rheumatology. Its integration into healthcare systems requires
regulatory frameworks, medical staff training, the development of digital infrastructure, and interdisciplinary collaboration.
Keywords: artificial intelligence; deep learning; machine learning; neural networks,; rheumatology.
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AktyanbHocTb: [lpuMeHeHWe WuCKycCTBEHHOrO uHTennekta (M) B KNWHWMYECKOW npakTUke OTKPbIBAET HOBble
BO3MOXHOCTU ANS MOBbILIEHUS TOYHOCTW AMArHOCTUKM M MPOrHO3MPOBaHWS B PEBMATONOrUK, A€ XapakTepHa BblCOkast
reTeporeHHOCTb 3ab0NeBaHNI W CIIOKHOCTL MHTEPNPETALMM BU3YabHbIX U KITMHUYECKMX AaHHbIX.

Crparerusi noucka: [poBeaeH aHanua 58 nybnukauum, 0TobpaHHbIX 13 467 peneBaHTHbIX UCTOYHUKOB (2015-2025 rT.),
naeHTuduumpoBaHHbix B 6asax PubMed, GoogleScholar u Cyberleninka. BkmioueHbl opurvHanbHble MCCIef0oBaHNS U
0030pHble CTaTb, MOCBALLEHHBIE NPYMEHEHMIO METOL0B MALLMHHOTO U ry6okoro 0byyeHus B peBMaTosnornu.

PesynbTtatbl: VW akTMBHO BHeApsSeTCA ANA PELUeHUst 3aay paHHen OMarHOCTWKM, MPOrHO3MPOBAHUS TEYEHUS U
nogbopa Tepanuu npu pPeBMATOMAHOM apTpuTe, CMOHAMIOApTpUTaX, CUCTEMHOM KPacHOW BOMYaHKE U OCTeoapTpuTe.
Hanbornee addekTMBHbIMM OKa3anuCb CBEPTOYHBIE HEMPOHHbIE CETU, MyMNbTUOMHbIE MOOXOObl M afanTUBHbIE MOZENM
NMPOrHO3MPOBAHKSA, AEMOHCTPUPYIOLLME BbiCOKy TouHOCTb (B0 AUC po 0,85). HecmoTpst Ha 3HauMTenbHbIA NOTEHLMan,
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KMMHUYECKOE MPUMEHEHWE 3aTPYAHEHO M3-3a OrpaHMYEeHHOCTH 0byJaloLmx BbIBOPOK, HeOOX0AMMOCTY BHELIHEN BanvMgaummn
1 HEQOCTATOYHOM CTaHAapTM3aUnK Moaenen.

3aknioyenune: N obnagaet BbICOKOW MPUKNAAHON LIEHHOCTBIO B PEBMATONOMMYECKON NpakTuke. [ns wHTerpauun B
CUCTEeMY 30paBOOXPaHEHNS1 HEOOXOAMMbI HOPMATUBHOE perynmpoBaHue, NOAroTOBKa MEAMLIMHCKOTO NepcoHana, pas3sutue
LMcppOBOI MHGPACTPYKTYPbI U MEXANCLMMIMHAPHOE COTPYAHUYECTBO.

Knrovesble cnoea: uckyccmeeHHbIl uHmennekm, enybokoe obyyeHue, MalwuHHOe 0by4yeHue, HeUpPOHHble cemu,
pesmMamonoaus.

Ans yumupoearus:

Memposa FO.B., NopembikuHa M.B., MearHosa P.J1., Koxaxmemosa [.K., bomabaesa A.C., Pazgodoga A.A.BoamoxHoCTH
MCKYCCTBEHHOTO WHTENNEKTa B COBpeMeHHoM peamatonorin. O63op nutepatypsl // Hayka v 3gpaBooxparenue. 2025. T.27
(3), C. 236-244. doi: 10.34689/SH.2025.27.3.025
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©3ekTiniri: Knunukanblk Taxipubene xacaHgbl uHTennekTiHi ()KW) kongaHy peBmMartonorvs canacbiHha AuarHo3 Ko
MeH Gormkay AanairiH apTTbipy yLWiH XaHa MyMKiHAiKTep awagpl. byn canaga aypynapablH, reTeporeHiniri xsHe Bu3yangpl
api KNWHWKanbIK AepekTepai TyCiHAIpyaAeri Kypaeninik Xofapbl.

I3gey ctpateruscbl: PubMed, Google Scholar xaHe CyberLeninka fepekkopnapblHaH aHblkTanfaH 467 nepekke3git,
iiHeH ipikTenreH 58 FoiNbiMK xapuanaHbiMFa Tangay xyprisingi (2015-2025 xok.). Pesmatonorvsiga mMallmHanblK xaHe
TEpPEH, OKbITY SICTEPIH KONAaHyFa apHarnFaH TyMHYCKAmbIk 3epTTeyNep MeH LUOMY Makananapbl KapacTbipbingsi.

Hatuxenep: XW epte gnarHoctukanay, aypy 6apbiCbiH Gormkay XaHe XekeneHgipinreH emgi TaHaay MiHOETTepiH
LeLy yiliH KeHiHeH eHrisinyge. byn peTTe peBMaTouAThl apTPUT, COHAWNOAPTPUT, XKyNeni Kbi3bin XKeri XoHe 0cTeoapTpuT
CUSAKTbI aypynap kapacTbipblnfFaH. EH TiMAi agicTep peTiHoe — eTe 4an HEMPOHAbIK Xeninep, MynbTUOMAbIK, Tacingep
XaHe GenimaenreH Gomkxamablk, Moaenbaep TaHbingbl. Onap xofapbl gangikneH (AUC 0.85-ke gemiH) epekweneHai.
[ereHMeH, OKbITY AEpeKTepiHiH, LUeKTeyniniri, CbIpTKbl Banuaauus KaxXeTTiniri XaHe mogdenbAepai CTaHfapTTaydbiH,
XETKINIKCI3air KMMHWKaNbIK KON4aHyFa kegepri kentipyae.

KopbITbiHAbL: XXacaHabl WHTENNEKT peBMaTonoruanbik Toxipubene xofapbl KonaaHbanbl KyHObIIbIKKA MeE.
[leHcaynblk cakTay XyWeciHe UHTerpauuanay yLid HopMaTUBTIK peTTey, MeauLMHarbIk NepcoHanbl aaspnay, Ldprbik,
WHPaKypbITbIMAbI AaMbITY XoHE NaHaparblK bIHTBIMAKTACTbIK KAXET.

TyliiHdi ce3dep: xacaHObl URMEIIEKM, MEPEH, OKbIMY, MallUHaMeH OKbImy, HelPOHObIK Xesinep, peeMamornoaust.

Haliekce3 ywiH:

lMemposa (0.B., MopembikuHa M.B., MeaHosa P.J1., Koxaxmemosa [.K., bomabaega A.C., Kasipai peemamonoausidarbi
XKacaHObl UHMeNNekmiHiy, MyMKiHOikmepi. SnebuetTik wony // Foinbim xaHe feHcaynbik. 2025. T.27 (3), b. 236-244. doi:
10.34689/SH.2025.27.3.025

Introduction: rheumatoid arthritis (RA), ankylosing spondylitis (AS),

The rapid advancement of artificial intelligence (Al) has  psoriatic arthritis (PsA), systemic lupus erythematosus
ushered in a new era in clinical medicine, where precision ~ (SLE), and osteoarthritis (OA). Neural networks have
and standardization of diagnostic decision-making are ~ demonstrated the ability to identify signs of joint
becoming equally essential. In the field of rheumatology -  inflammation in radiographs and even to generate synthetic
marked by heterogeneity in clinical presentation and  computed tomography (CT) images, enabling standardized
disease trajectory - Al has the potential to enhance  and non-invasive disease assessment [22, 40].

consistency and reproducibility in diagnostic algorithms and Beyond diagnosis, Al contributes to patient stratification,
therapeutic planning [41]. treatment optimization, and outcome prediction. The ability

In particular, Al technologies are increasingly being  to forecast disease progression and the likelihood of flares
applied to address variability in the interpretation of clinical, is especially critical in chronic inflammatory conditions,

laboratory, and imaging data in diseases such as
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where timely therapeutic interventions can significantly alter
patient trajectories [39].

Despite these advancements, several barriers remain.
Integrating heterogeneous data—ranging from clinical
records and imaging to molecular and behavioral data—
demands robust, high-quality training datasets. Moreover,
the development of explainable and generalizable models
remains a methodological challenge. Nevertheless,
promising studies demonstrate the feasibility of Al
applications in predicting RA exacerbations and identifying
metabolomic profiles associated with gout flares, indicating
the maturity of this research domain [27, 55, 56].

The potential of Al in healthcare is of particular
relevance to Kazakhstan. While foundational steps such as
electronic health records (EHRs) implementation and
telemedicine platforms are being developed in major cities
like Astana and Almaty, the broader adoption of Al in
rheumatologic care remains limited [1, 34]. Key obstacles
include underdeveloped digital infrastructure in rural areas,
gaps in healthcare workforce training, and data privacy
concerns [34].

However, Kazakhstan’s unique  geographic,
demographic, and  epidemiological context  offers
opportunities for Al-driven solutions. The integration of Al
may bridge gaps in rheumatologic care delivery across the
country, particularly in underserved regions. Government
initiatives in digital health, combined with partnerships with
international research centers and targeted education in
medical informatics, could accelerate the adoption of Al in
clinical practice.

This review aims to provide a critical synthesis of
current and emerging applications of Al in rheumatology,
with an emphasis on their potential implementation in
Kazakhstan's healthcare system.

Search Strategy

A comprehensive literature search was conducted to
identify peer-reviewed publications related to the application
of Al in rheumatology. The search was performed using
internationally recognized databases of evidence-based
medicine and electronic scientific libraries, including
PubMed, Google Scholar, and CyberLeninka. Inclusion
criteria  were as follows: original research articles,
systematic reviews and narrative reviews; publications in
English and Russian; full-text availability with structured
abstracts; publication years ranging from 2015 to 2025.
Exclusion criteria included: book chapters, dissertations,
and conference abstracts; publications lacking original data
or relevance to Al applications in rheumatology; articles

without abstracts or full-text access; unpublished
manuscripts.
The search strategy incorporated the following

keywords: "artificial intelligence", "machine learning", "deep
learning", "neural networks", and "rheumatology".

The initial search identified 467 articles. After screening
titles, abstracts, and full texts according to the predefined
eligibility criteria, 58 publications were selected for detailed

analysis.

Results and Discussion:
Types, concepts and methods
intelligence

of artificial

Al is an interdisciplinary domain within computer
science focused on the development of algorithms capable
of simulating human cognitive functions, including learning,
pattern  recognition, prediction, and decision-making.
Among the core subfields of Al is machine learning (ML),
which enables systems to detect patterns in data without
relying on explicitly defined rules. This adaptive capability
allows ML models to solve complex problems by learning
from input data [58].

In contrast to traditional statistical approaches that
emphasize hypothesis testing and causal inference, ML
methods prioritize predictive accuracy. However, this often
comes at the expense of model interpretability—a critical
concern in clinical settings where transparency and
accountability are essential.

Deep learning (DL), a subdomain of ML, utilizes
multilayered artificial neural networks. The rise in
computational capacity and the growing availability of large-
scale datasets have led to the widespread use of DL,
particularly in medical image analysis, genomics, and drug
discovery [28]. A hierarchical structure of Al technologies is
illustrated in Figure 1.

Figure 1. Hierarchy of Artificial
Intelligence Technologies

ML methods are conventionally divided into three
primary categories, each tailored to specific problem types:

1. Supervised Learning

Supervised learning involves training algorithms on
labeled datasets, where both input features and
corresponding target outputs are known. Applications
include disease classification from medical images, analysis
of EHRs, and prediction of disease recurrence risk.
Common supervised algorithms include random forests,
support vector machines (SVM), convolutional neural
networks (CNNs), and natural language processing (NLP)
models [58].

2. Unsupervised Learning

This approach is employed when labeled data are
unavailable. The objective is to uncover underlying
structures, clusters, or patterns in the dataset using
techniques such as clustering or dimensionality reduction.
Examples in medicine include patient subgrouping based
on disease risk or phenotypic characteristics, and
identification of novel disease subtypes.
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3. Reinforcement Learning

In this paradigm, the model learns optimal strategies
through interactions with its environment, receiving
feedback in the form of rewards or penalties. Reinforcement
learning is actively applied in robotic surgery and in

optimizing adaptive therapeutic strategies,
dynamic treatment planning [21].

A comparative summary of widely used supervised ML
algorithms is provided in Table 1.

including

Table 1.

Comparative Characteristics of Major Machine Learning Algorithms.

Algorithm Description

Common use cases References

Logistic Regression

used to define the class.

Model for binary classification, establishes a
relationship between input variables and the probability [rules, screening
of one of two outcomes occurring. A threshold value is

Flare prediction, clinical decision [[25], [29]

Lasso Regression
effective for a large number of features

Regularized linear regression, prevents overtraining
due to a penalty (L1-norm) in the loss function,

Regression/feature selection, |[2]
risk modeling

A classifier that constructs an optimal hyperplane for

Diagnosis from gene expression |[24], [27],

Suppgrt Vector class separation; robust to outliers and applicable to  |or metabolomic data [29]
Machine (SVM) N .
high dimensional problems.
. Hierarchical model representing decisions in the form Dlagnos‘t lc algorithms that [29]
Decision Tree , . o sequentially evaluate symptoms
of a tree; easy to interpret but prone to overfitting.
and lab results
An ensemble method that combines multiple decision  |Risk prediction, patient [2], [5], [18]
Random Forest (RF) |trees; improves model accuracy and robustness by stratification, outcome modeling |[23], [24]
reducing overfitting.
. Classifier assuming feature independence; works Disease prediction [44]
Naive Bayes . .
quickly and efficiently on large amounts of data.
Convolutional Neural A multilayer structure that mimics the operation of Prognosis prediction, disease  |[3], [4], [20]
neurons; well suited for processing images, text, and  |classification, X-ray/MRI [22], [35],
Networks (CNN) . .
other complex data. interpretation [48]

Among ML methods, CNNs have emerged as
particularly powerful tools. These architectures have
demonstrated high accuracy in diagnosing diseases from
radiological images such as X-rays, CT-images, and
magnetic resonance imaging (MRI) - in some cases
outperforming human experts in specific diagnostic tasks
[15, 28]. CNNs are also used in genomics for identifying
pathogenic mutations and developing personalized
treatment strategies. Nevertheless, these models require
large training datasets and substantial computational
resources, which can limit their scalability and adoption in
routine clinical practice.

A fundamental understanding of Al and ML concepts is
increasingly important for healthcare professionals,
particularly when evaluating and applying Al-driven tools in
clinical workflows. To promote transparency, reproducibility,
and safety, various methodological guidelines have been
developed - such as CONSORT-AI, SPIRIT-AI, and others -
which assist researchers in designing Al studies and aid
clinicians in critically appraising Al model performance [26,
31, 33, 45].

In this review, we examined the role of Al - specifically
neural network models - in the diagnosis, prognosis, and
clinical monitoring of major rheumatologic diseases.

Rheumatoid arthritis

Diagnosis and assessment of disease activity

Modern ML and computer vision (CV) techniques are
increasingly applied for early diagnosis of RA, including the
preclinical phase. CV algorithms have shown efficacy in
analyzing radiographic, ultrasonographic (US), and MRI

data to detect early inflammatory changes such as
erosions, bone marrow edema, and synovitis.

Stoel B.C. et al. (2019) demonstrated the utility of CNNs
in the automated analysis of hand MRI for early RA
detection. These models accurately and reproducibly
identified bone marrow edema and tenosynovitis,
outperforming traditional visual assessment by radiologists.
The study highlighted the potential for full automation and
emphasized the necessity of interpretable models and high-
quality annotated datasets for clinical implementation [48].

Several studies have confirmed the high sensitivity and
specificity of Al models for detecting erosions and joint
space narrowing on radiographs in RA [13, 20, 35, 43].
However, current models remain insufficiently validated for
routine clinical use due to limited dataset diversity, absence
of external validation, and inconsistent reporting standards
[4].

In the MEDUSA project, an ML-based method was
developed to automatically grade synovitis on US images.
While the algorithm demonstrated good concordance with
expert evaluations, interrater agreement (k-coefficients)
between algorithm and experts was lower than that
between experts themselves, suggesting potential for
improvement [32].

Predicting response to therapy

Another promising application of Al in rheumatology is
the prediction of therapeutic response, particularly to
biologic and targeted synthetic disease-modifying
antirheumatic drugs (DMARDs), which could enable
personalized treatment strategies.
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Bouget V. et al. (2022) used Al models to predict
treatment response to methotrexate and tumor necrosis
factor - a (TNF-a) inhibitors using data from the ESPOIR, T-
Reach, and Leiden cohorts. The models achieved AUC
values ranging from 0.78 to 0.84, indicating high predictive
accuracy [5, 6]. AUC, or area under the receiver operating
characteristic curve, quantifies model performance: 1.0
reflects perfect discrimination, while 0.5 indicates random
classification.

Tao W. et al. (2021) demonstrated that integrating
transcriptomic, proteomic, and clinical data significantly
improved prediction of response to biologic therapies such
as adalimumab and etanercept (AUC = 0.79 in the
BiOCURA cohort) [49]. Similarly, Casaburi et al. (2022)
applied RNA sequencing and ML methods to synovial
tissue to predict early response to conventional DMARDs
9.

In a recent study, Sonomoto K. et al. (2024) developed
a model to predict clinical remission based on the Clinical
Disease Activity Index (CDAI) during TNF- a inhibitor
therapy using data from the Japanese FIRST registry (AUC
= (.70) [46]. Cohen S. et al. (2021) created a molecular
signature classifier to identify likely non-responders to TNF-
a inhibitors, achieving AUC > 0.70 based on ACR50/70
criteria [12].

These findings highlight the potential of Al-driven
personalized treatment approaches in RA. However, they
also underscore the need for external validation,
standardized evaluation metrics, and integration into clinical
workflows.

Predicting progression and exacerbations

Al-based models, particularly those using recurrent
neural networks (RNNs) and time series analysis, show
promise in predicting RA progression and flares. These
models leverage longitudinal data - including demographic,
clinical, and laboratory variables - to anticipate disease
trajectory and optimize treatment plans.

Kalweit M. et al. (2021) developed a DL model
(AdaptiveNet) using data from over 9,500 patients in the
Swiss SCQM registry. The model achieved an AUC of 0.73,
sensitivity of 84.2%, specificity of 61.5%, and 75.6%
classification accuracy for disease activity (DAS28-ESR >
2.6). The average error in DAS28-ESR prediction was 0.9.
Key predictors included the number of tender joints, patient
age, and disease duration [24].

Norgeot B. et al. (2019) evaluated gradient-boosted
decision tree models using data from EHRs of 820 patients
across two centers. These models outperformed traditional
methods in predicting disease activity and identified over 20
relevant clinical variables. The study suggested that similar
approaches could be extended to other chronic diseases
with measurable outcomes [38].

Ankylosing spondylitis

Image Interpretation

Recent advancements in medical imaging analysis have
seen a growing application of ML techniques, particularly in
improving the diagnostic and prognostic accuracy for
musculoskeletal diseases. A prominent area of research is
the use of CNNs to classify the severity of sacroiliitis based
on the modified New York criteria.

Multiple studies have demonstrated that CNNs can
reliably differentiate between normal and pathological cases

of sacroiliitis on radiographs (e.g., grade =2 bilaterally or
grade =3 unilaterally), achieving diagnostic accuracy
ranging from 89% to 97%, sensitivity from 79% to 91%, and
specificity from 79% to 96%. These performance metrics
are comparable to those achieved by experienced
rheumatologists. In addition to classification tasks, CNNs
are increasingly used to localize structural lesions such as
erosions, subchondral sclerosis, and ankylosis in the
sacroiliac joints [7].

On MRI of the sacroiliac joints, ML algorithms have
shown capability in detecting bone marrow edema—a key
imaging marker of active inflammation [8, 42]. A German
study (Bressem K.K. et al., 2022) reported that CNNs
achieved diagnostic sensitivity and specificity comparable to
expert readers, and in some cases, outperformed general
radiologists without specific expertise in musculoskeletal
imaging [7]. However, variability in reported diagnostic
performance across studies may reflect heterogeneity in
MRI acquisition protocols, reference standards, and patient
sampling, particularly in single-center settings.

Beyond diagnostic tasks, CNNs have also been utilized
for prognostic modeling, including the prediction of
radiographic progression [3], and for generating synthetic
MRI and CT images [23]. Notably, synthetic CT generated
from MRI data has emerged as a promising tool, providing
enhanced visualization of erosions, sclerosis, and ankylosis
compared to conventional MRI. These synthetic images
have shown strong concordance with reference (true) CT
and offer a radiation-free alternative for early detection of
structural changes in axial AS.

Dynamic monitoring of patients

Beyond traditional imaging analysis, Al - including large
language models (LLMs) such as GPT-4, LLaMA, Bard, and
Claude - has emerged as a promising tool for the dynamic
monitoring of patient-reported outcomes (PROs). These
models can generate structured textual summaries based
on patients’ descriptions of their symptoms and lived
experiences, facilitating more granular and longitudinal
tracking of disease dynamics.

By automating the interpretation and synthesis of

subjective reports, LLMs offer potential advantages
including reduced patient burden, streamlined data
collection, and improved consistency in symptom

monitoring over time. However, several challenges remain.
These include the accurate extraction and contextualization
of nuanced patient-reported symptoms from natural
language input, the difficulty of mapping free-text data to
standardized quantitative metrics, and the need for rigorous
validation of such approaches against established PRO
instruments [53, 54].

Predicting response to therapy

The selection and evaluation of treatment efficacy,
particularly for biologic and targeted synthetic DMARDs in
AS, remains a clinical challenge. This is due to the
individual variability in treatment response, the absence of
robust predictive biomarkers, and the substantial costs
associated with advanced therapies. In this context, the
application of Al-based predictive models represents a
rapidly evolving and promising area of research [29, 30, 57].

In a retrospective study by Wang R. et al. (2022), data
from 1,899 patients with active AS were used to develop
predictive models for treatment response to TNF- a
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inhibitors at 12 weeks. The most significant predictors of
therapeutic response included C-reactive protein levels and
patient-reported activity based on the Bath Ankylosing
Spondylitis Disease Activity Index (BASDAI)—particularly
item 2, which assesses the general level of pain in the neck,
back, or hips.

In contrast, factors such as elevated body mass index
(BMI), older age, and higher scores on the Bath Ankylosing
Spondylitis Functional Index (BASFI) were associated with
reduced likelihood of response. The developed models
demonstrated moderate to high predictive performance and
could serve as useful tools for the individualization of
treatment strategies in clinical practice [57].

Psoriatic arthritis

Differential diagnosis, prognosis

PsA is a chronic inflammatory disease characterized
by lesions of joints, skin and entheses, and is
characterized by clinical  polymorphism,  which
complicates diagnosis. In this regard, Al methods aimed
at improving the accuracy of differential diagnosis and
identifying phenotypes with different prognosis are being
actively developed. A number of studies have proved
high efficiency of Al algorithms in differentiating PsA
from seropositive and seronegative RA according to MRI
and US of joints [16, 17]. In a prospective cohort study
based on Clinical Practice Research Datalink (UK),
which included data from more than 120 thousand
patients, models were developed to predict joint lesions
in psoriasis patients. The models demonstrated high
accuracy (AUC up to 0.851), and among the most
significant predictors were highlighted the duration of
psoriasis, intake of nonsteroidal anti-inflammatory drugs
(NSAIDs), the presence of arthralgias, and an increase
in the level of C-reactive protein [44].

Monitoring and evaluation of activity

A study by Huang K. (2023) used a neural network
model trained on more than 14,000 images from 2367
psoriasis patients, capable of automatically calculating the
Psoriasis Area and Severity Index (PASI) with accuracy
better than the average of 43 experienced dermatologists.
The developed system was integrated into the SkinTeller
mobile application available on the WeChat platform and
successfully tested in 18 clinics [19].

Systemic lupus erythematosus

Diagnosis, forecasting and monitoring

SLE is a chronic multisystem autoimmune disease
characterized by pronounced clinical and serological
heterogeneity. Diagnostic challenges stem from the overlap
of SLE manifestations with those of other autoimmune
conditions, as well as the temporal variability of clinical
symptoms. These complexities have stimulated growing
interest in the application of Al to enhance diagnostic
accuracy and improve disease monitoring.

One prominent example of Al integration into clinical
diagnostics is the SLE Risk Probability Index (SLERPI), a
ML-based algorithm developed to aid in the binary
classification of SLE (lupus vs. non-lupus). In a recent
study, the model achieved a high overall accuracy of
94.8%, with strong performance across different clinical
subtypes: early-stage SLE (93.8%), lupus nephritis (97.9%),
neuropsychiatric SLE (91.8%), and severe SLE requiring
immunosuppressants or biologic therapies (96.4%) [2].

Usategui I. et al. (2024) further demonstrated the
potential of Al for prognosis, achieving predictive accuracies
of up to 94% for the development of lupus nephritis and
disease flares using clinical and laboratory data extracted
from EHRs [52]. Similarly, Ceccarelli F. et al. (2021)
developed a ReliefF-based ML model that achieved
excellent diagnostic accuracy (AUC = 0.94) using only the
three most informative clinical features: anti-double-
stranded DNA (anti-dsDNA) positivity, reduced complement
C3/C4 levels, and the presence of a malar or
maculopapular rash [10].

Neural network models have also been widely
employed to analyze complex, high-dimensional biomedical
data, including cytokine profiles, genetic signatures,
transcriptomic data, and serological biomarkers. These
models facilitate early organ-specific diagnosis, disease
phenotyping, patient stratification, and prediction of
therapeutic response [11].

Efforts to improve realtime disease monitoring are
ongoing. Jorge AM. et al. (2022) applied a Random Forest
(RF) classifier to predict hospitalizations in SLE patients,
achieving an AUC between 0.751 and 0.772. The most
informative variables included anti-dsDNA ftiters, serum
complement levels C3, complete blood count parameters,
inflammatory markers, age, and serum albumin [23]. In another
application, researchers in China used the same model
architecture to predict adverse pregnancy outcomes in women

with  SLE.  Significant  predictors included  alanine
aminotransferase  (ALT),  gamma-glutamyltranspeptidase
(GGT), antinuclear antibody (ANA) titers, and platelet counts
[18].

Osteoarthritis

Phenotyping

In recent years, Al-based approaches have been
actively developed to identify OA phenotypes that differ in
clinical and structural characteristics, prognosis, and
potential response to therapy. Nelson A.E. (2022) applied
the biclustering method (simultaneously clustering knees
and clinical features to account for their interaction) to
describe OA subgroups, two of which demonstrated a
worse prognosis: more frequent total joint replacement and
more pronounced structural progression [36].

Demanse D. et al. (2023) applied DL methods and
distinguished  phenotypes with high body weight,
comorbidities and low physical activity, as well as younger
and more active groups [14].

In addition to clinical data, studies have begun to
include molecular parameters. For example, Steinberg J. et
al. (2021) evaluated gene expression in cartilage and
synovial membrane of joints in 113 patients. Clusters
differing in the activity of inflammation pathways,
extracellular matrix remodeling, and cell adhesion were
identified [47]. Trajerova M. et al. (2022) investigated the
composition of immune cells in synovial fluid from patients
with knee OA and identified four immune subtypes
associated with different clinical outcomes after 3-6 months
of NSAIDs therapy, which may have implications for
predicting response to therapy [50].

Conclusion

A review of current literature highlights the growing
potential of Al in the field of rheumatology, particularly for
early diagnosis, disease progression forecasting, and
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treatment  personalization. Contemporary  algorithms,
including CNNs and multi-omics models, have
demonstrated  high  diagnostic  and  prognostic

performance—achieving AUC values of up to 0.85 in
several studies. These results pertain to the analysis of
various data modalities, including MRI, radiographs, and
EHRs.

Despite these promising developments, widespread
clinical implementation remains limited due to several key
challenges: lack of standardized Al algorithms, insufficiently
representative training datasets, and unresolved ethical
considerations within medical practice.

In the context of Kazakhstan, the application of Al in
rheumatology holds particular relevance. The country's vast
geography, ethnocultural diversity, and unequal access to
specialized care underscore the need for scalable digital
and intelligent healthcare solutions. To fully harness the
benefits of Al in national healthcare, several critical steps
must be taken: enhancement of digital infrastructure,
development of workforce competencies, establishment of
clear legal and ethical frameworks, and active participation
in international multicenter research collaborations. These
initiatives will not only improve the accessibility and quality
of rheumatologic care but will also position Kazakhstan as a
meaningful contributor within the global scientific and
medical community.
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