Online ISSN: 3007-0244,
Print ISSN:  2410-4280
ГЕНЕТИЧЕСКИЕ БИОМАРКЕРЫ ОСТРОГО ОТТОРЖЕНИЯ ТРАНСПЛАНТАТА ПОСЛЕ ТРАНСПЛАНТАЦИИ СЕРДЦА
Трансплантация сердца является стандартом лечения терминальной сердечной недостаточности, резистентной к медикаментозной терапии. Пациенты после трансплантации сердца подвергаются риску развития различных осложнений во время наблюдения. Распространенные осложнения включают раннюю недостаточность аллотрансплантата, острое отторжение трансплантата, коронарную васкулопатию аллотрансплантата, почечную недостаточность, инфекции и рак. Причины вторичной дисфункции трансплантата необходимо учитывать после первой недели трансплантации. На сегодняшний день, гистологическая стратификация острого отторжения при помощи эндомиокардиальной биопсии с гистопатологией является стандартным методом диагностики острого отторжения, оценки его тяжести и ответа на терапию. К сожалению, этот метод инвазивный и имеет некоторые ограничения. В дополнение к этому острое отторжение имеет два фенотипа: острое клеточное отторжение и антитело-опосредованное отторжение, что затрудняет постановку гистопатологического диагноза. Вторичные негенетические методы мониторинга сердечного отторжения могут включать эхокардиографию, МРТ сердца, тропонин и другие методы. Надежный неинвазивный маркер для выявления острого отторжения до развития дисфункции трансплантата, возможно, приведет к лучшим результатам для тех пациентов, у которых есть вероятность развития отторжения аллотрансплантата. В нашем обзоре мы собрали последние данные о генетических неинвазивных биомаркерах, включая внеклеточную ДНК донорского происхождения, метилирование ДНК, профилирование экспрессии генов РНК (матричная РНК) и микро-РНК. Анализ метилирования внеклеточной ДНК может помочь различить различные типы острого отторжения. Метод микро-РНК может сыграть важную роль в будущем как цель разработки иммунодепрессантов. В основе анализа внеклеточной ДНК донорского происхождения лежит обнаружение однонуклеотидных полиморфизмов, отличающих ДНК донора от ДНК реципиента. Фракция внеклеточной ДНК донора быстро снижается после трансплантации и увеличивается только в случае острого отторжения или повреждения миокарда. Таким образом, генетические неинвазивные методы играют ключевую роль в оценке и мониторинге отторжения сердечного аллотрансплантата. Анализ статей установил, что неинвазивные методы на основе ДНК минимизируют риски инвазивных процедур. Это безопасный, удобный и точный метод диагностики сердечной недостаточности после трансплантации сердца. Ключевые слова: трансплантация сердца, острое отторжение трансплантата, генетические биомаркеры, внеклеточная ДНК донорского происхождения, экономическая эффективность
Миргуль Ф. Баянова1, https://orcid.org/0000-0002-6167-5357 Алия Т. Аскербекова1, https://orcid.org/0009-0005-3213-7073 Ляззат К. Назарова1, https://orcid.org/0000-0002-3325-5240 Айжан Б. Абдикадирова1, https://orcid.org/0000-0002-1951-2837 Малика Е. Сапаргалиева1, https://orcid.org/0000-0002-0172-353X Диас Б. Малик1, https://orcid.org/0009-0008-3542-1960 Гульжан Ш. Мырзахметова1, https://orcid.org/0000-0001-8325-1267 Юрий В. Пя1, https://orcid.org/0000-0001-7249-0510 Айдос К. Болатов2, https://orcid.org/0000-0002-5390-4623
1. Agbor-Enoh S., Shah P., Tunc I., Hsu S., Russell S., Feller E., Shah K., Rodrigo M.E., et al. GRAfT Investigators. Cell-Free DNA to Detect Heart Allograft Acute Rejection. Circulation, 2021. 143(12), 1184–1197. https://doi.org/10.1161/CIRCULATIONAHA.120.049098 2. Alraies M.C., Eckman P. Adult heart transplant: indications and outcomes. Journal of thoracic disease, 2014. 6(8), 1120–1128. https://doi.org/10.3978/j.issn.2072-1439.2014.06.44 3. Amadio J.M., Rodenas-Alesina E., Superina S., Kozuszko S., Tsang K., Simard A., Aleksova N., Kobulnik J. et al. Sparing the Prod: Providing an Alternative to Endomyocardial Biopsies With Noninvasive Surveillance After Heart Transplantation During COVID-19. CJC open, 2022. 4(5), 479–487. https://doi.org/10.1016/j.cjco.2022.02.002 4. Barnard C. N. The operation. A human cardiac transplant: an interim report of a successful operation performed at Groote Schuur Hospital, Cape Town. South African medical journal = Suid-Afrikaanse tydskrif vir geneeskunde, 1967. 41(48), 1271–1274. 5. Beck J., Oellerich M., Schulz U., Schauerte V., Reinhard L., Fuchs U., Knabbe C., Zittermann A., Olbricht C. et al. Donor-Derived Cell-Free DNA Is a Novel Universal Biomarker for Allograft Rejection in Solid Organ Transplantation. Transplantation proceedings, 2015. 47(8), 2400–2403. https://doi.org/10.1016/j.transproceed.2015.08.035 6. Bodez D., Hocini H., Tchitchek N., Tisserand P., Benhaiem N., Barau C., Kharoubi M., Guellich A., Guendouz S., Radu C. Myocardial Gene Expression Profiling to Predict and Identify Cardiac Allograft Acute Cellular Rejection: The GET-Study. PloS one, 2016. 11(11), e0167213. https://doi.org/10.1371/journal.pone.0167213 7. Böhmer J., Wasslavik C., Andersson D., Ståhlberg A., Jonsson M., Wåhlander H., Karason K., Sunnegårdh J., Nilsson S. et al. Absolute Quantification of Donor-Derived Cell-Free DNA in Pediatric and Adult Patients After Heart Transplantation: A Prospective Study. Transplant international: official journal of the European Society for Organ Transplantation, 2023.36, 11260. https://doi.org/10.3389/ti.2023.11260 8. Brink J.G., Hassoulas J. The first human heart transplant and further advances in cardiac transplantation at Groote Schuur Hospital and the University of Cape Town - with reference to: the operation. A human cardiac transplant: an interim report of a successful operation performed at Groote Schuur Hospital, Cape Town. 2009. Cardiovascular journal of Africa, 20(1), 31–35. 9. Chrysakis N., Magouliotis D.E., Spiliopoulos K., Athanasiou T., Briasoulis A., Triposkiadis F., Skoularigis J., Xanthopoulos A. et al. Heart Transplantation. Journal of clinical medicine, 2024. 13(2), 558. https://doi.org/10.3390/jcm13020558 10. Constanso-Conde I., Hermida-Prieto M., Barge-Caballero E., Núñez L., Pombo-Otero J., Suárez-Fuentetaja N., Paniagua-Martín M.J., Barge-Caballero G., Couto-Mallón D. et al. Circulating miR-181a-5p as a new biomarker for acute cellular rejection in heart transplantation. The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation, 2020. 39(10), 1100–1108. https://doi.org/10.1016/j.healun.2020.05.018 11. Coutance G., Desiré E., Duong Van Huyen J.P. A Review of Biomarkers of Cardiac Allograft Rejection: Toward an Integrated Diagnosis of Rejection. Biomolecules, 2022. 12(8), 1135. https://doi.org/10.3390/biom12081135 12. Cox D.R.A., McClure T., Zhang F., Wong B.K.L., Testro A., Goh S.K., Muralidharan V., Dobrovic A. Graft-Derived Cell-Free DNA Quantification following Liver Transplantation Using Tissue-Specific DNA Methylation and Donor-Specific Genotyping Techniques: An Orthogonal Comparison Study. Epigenomes, 2023. 7(2), 11. https://doi.org/10.3390/epigenomes7020011 13. Cruz C.B.B.V., Hajjar L.A., Bacal F.,Lofrano-Alves, M.S., Lima M.S.M., Abduch M.C., Vieira M.L.C., Chiang H.P. et al. Usefulness of speckle tracking echocardiography and biomarkers for detecting acute cellular rejection after heart transplantation. Cardiovascular ultrasound, 2021. 19(1), 6. https://doi.org/10.1186/s12947-020-00235-w 14. Dolan R.S., Rahsepar A.A., Blaisdell J., Suwa K., Ghafourian K. et al. Multiparametric Cardiac Magnetic Resonance Imaging Can Detect Acute Cardiac Allograft Rejection After Heart Transplantation. JACC. Cardiovascular imaging, 2019. 12(8 Pt 2), 1632–1641. https://doi.org/10.1016/j.jcmg.2019.01.026 15. Duong Van Huyen J.P., Tible M., Gay A., Guillemain R., Aubert O., Varnous S., et al. MicroRNAs as non-invasive biomarkers of heart transplant rejection. European heart journal, 2014. 35(45), 3194–3202. https://doi.org/10.1093/eurheartj/ehu346 16. Edwards R.L., Menteer J., Lestz R.M., Baxter-Lowe, L.A. Cell-free DNA as a solid-organ transplant biomarker: technologies and approaches. Biomarkers in medicine, 2022. 16(5), 401–415. https://doi.org/10.2217/bmm-2021-0968 17. Feingold B., Rose-Felker K., West S.C., Miller S.A., Zinn M.D. Short-term clinical outcomes and predicted cost savings of dd-cfDNA-led surveillance after pediatric heart transplantation. Clinical transplantation, 2023. 37(5), e14933. https://doi.org/10.1111/ctr.14933 18. Feingold B., Rose-Felker K., West S.C., Zinn M.D., Berman P., Moninger A., Huston A., Stinner B., Xu Q., Zeevi A., Miller S.A. et al. Early findings after integration of donor-derived cell-free DNA into clinical care following pediatric heart transplantation. Pediatric transplantation, 2022. 26(1), e14124. https://doi.org/10.1111/petr.14124 19. Galeone A., Bernabei A., Pesarini G., Raimondi Lucchetti M., Onorati F., Luciani G.B. et al. Ten-Year Experience with Endomyocardial Biopsy after Orthotopic Heart Transplantation: Comparison between Trans-Jugular and Trans-Femoral Approach. Journal of cardiovascular development and disease, 2024. 11(4), 115. https://doi.org/10.3390/jcdd11040115 20. Giarraputo A., Barison I., Fedrigo M., Burrello J., Castellani C., Tona F., Bottio T., Gerosa G., Barile L., Angelini A. A Changing Paradigm in Heart Transplantation: An Integrative Approach for Invasive and Non-Invasive Allograft Rejection Monitoring. Biomolecules, 2021. 11(2), 201. https://doi.org/10.3390/biom11020201 21. Gökler J., Aliabadi-Zuckermann A.Z., Kaider A., Ambardekar A.V. et al. Indications, Complications, and Outcomes of Cardiac Surgery After Heart Transplantation: Results From the Cash Study. Frontiers in cardiovascular medicine, 2022. 10, 879612. https://doi.org/10.3389/fcvm.2022.879612 22. Gondi K.T., Kao A., Linard J., Austin B.A., Everley M.P., Fendler T.J., et al. Single-center utilization of donor-derived cell-free DNA testing in the management of heart transplant patients. Clinical transplantation, 2021. 35(5), e14258. https://doi.org/10.1111/ctr.14258 23. Han D., Miller R.J.H., Otaki Y., Gransar H., Kransdorf E., Hamilton M. et al. Diagnostic Accuracy of Cardiovascular Magnetic Resonance for Cardiac Transplant Rejection: A Meta-Analysis. JACC. Cardiovascular imaging, 2021. 14(12), 2337–2349. https://doi.org/10.1016/j.jcmg.2021.05.008 24. Hayward C. Cardiac Allograft Injuries: A Review of Approaches to a Common Dilemma, With Emphasis on Emerging Techniques. International journal of heart failure, 2022. 4(3), 123–135. https://doi.org/10.36628/ijhf.2021.0042 25. Hidestrand M., Tomita-Mitchell A., Hidestrand P.M., Oliphant A., Goetsch M., Stamm K., Liang H.L., Castleberry C., Benson D.W., et al. Highly sensitive noninvasive cardiac transplant rejection monitoring using targeted quantification of donor-specific cell-free deoxyribonucleic acid. Journal of the American College of Cardiology, 2014. 63(12), 1224–1226. https://doi.org/10.1016/j.jacc.2013.09.029 26. Kaliyev R., Lesbekov T., Bekbossynov S., Nurmykhametova Z., Bekbossynova M., Novikova S., Medressova A., Smagulov N. et al. Heart transplantation of patients with ventricular assist devices: impact of normothermic ex-vivo preservation using organ care system compared with cold storage. Journal of cardiothoracic surgery, 2020. 15(1), 323. https://doi.org/10.1186/s13019-020-01367-w 27. Kant S., Brennan D.C. Donor-Derived Cell-Free DNA in Kidney Transplantation: Origins, Present and a Look to the Future. Medicina (Kaunas, Lithuania), 2021. 57(5), 482. https://doi.org/10.3390/medicina57050482 28. Keller M., Agbor-Enoh S. Donor-Derived Cell-Free DNA for Acute Rejection Monitoring in Heart and Lung Transplantation. Current transplantation reports, 2021. 8(4), 351–358. https://doi.org/10.1007/s40472-021-00349-8 29. Kennel P.J., Yahi A., Naka Y., Mancini D.M., Marboe C.C., Max K., Akat K., Tuschl T., Vasilescu E.M., et al. Longitudinal profiling of circulating miRNA during cardiac allograft rejection: a proof-of-concept study. ESC heart failure, 2021. 8(3), 1840–1849. https://doi.org/10.1002/ehf2.13238 30. Khush K.K., Cherikh W.S., Chambers D.C., Harhay M.O., Hayes D.Jr., Hsich E., Meiser B., Potena L., Robinson A. et al. International Society for Heart and Lung Transplantation. The International Thoracic Organ Transplant Registry of the International Society for Heart and Lung Transplantation: Thirty-sixth adult heart transplantation report - 2019; focus theme: Donor and recipient size match. The Journal of heart and lung transplantation: the official publication of the International Society for Heart Transplantation, 2019. 38(10), 1056–1066. https://doi.org/10.1016/j.healun.2019.08.004 31. Khush K.K., Hsich E., Potena L., Cherikh W.S., Chambers D.C., Harhay M.O., Hayes D.Jr., Perch M., Sadavarte A. et al. International Society for Heart and Lung Transplantation. 2021. The International Thoracic Organ Transplant Registry of the International Society for Heart and Lung Transplantation: Thirty-eighth adult heart transplantation report - 2021; Focus on recipient characteristics. The Journal of heart and lung transplantation: the official publication of the International Society for Heart Transplantation, 40(10), 1035–1049. https://doi.org/10.1016/j.healun.2021.07.015 32. Kim P.J., Olymbios M., Siu A., Wever Pinzon O., Adler E., Liang N., Swenerton R., Sternberg J., Kaur N., et al. A novel donor-derived cell-free DNA assay for the detection of acute rejection in heart transplantation. The Journal of heart and lung transplantation: the official publication of the International Society for Heart Transplantation, 2022. 41(7), 919–927. https://doi.org/10.1016/j.healun.2022.04.002 33. Knüttgen F., Beck J., Dittrich M., Oellerich M., Zittermann A., Schulz U., Fuchs U., Knabbe C., Schütz E., Gummert J., Birschmann I. Graft-derived Cell-free DNA as a Noninvasive Biomarker of Cardiac Allograft Rejection: A Cohort Study on Clinical Validity and Confounding Factors. Transplantation, 2022. 106(3), 615–622. https://doi.org/10.1097/TP.0000000000003725 34. Lansman S.L., Ergin M.A., Griepp R.B. The history of heart and heart-lung transplantation. Cardiovascular clinics, 1990. 20(2), 3–19. 35. Liu Z., Perry L.A., Penny-Dimri J.C., Handscombe M., Overmars I., Plummer M., Segal R., Smith J.A. Elevated Cardiac Troponin to Detect Acute Cellular Rejection After Cardiac Transplantation: A Systematic Review and Meta-Analysis. Transplant international: official journal of the European Society for Organ Transplantation, 2022. 35, 10362. https://doi.org/10.3389/ti.2022.10362 36. Lu W., Zheng J., Pan X., Sun L. Diagnostic performance of echocardiography for the detection of acute cardiac allograft rejection: a systematic review and meta-analysis. PloS one, 2015. 10(3), e0121228. https://doi.org/10.1371/journal.pone.0121228 37. Lund L.H., Edwards L.B., Dipchand A.I., Goldfarb S., Kucheryavaya A.Y., Levvey B.J., Stehlik J. The Registry of the International Society for Heart and Lung Transplantation: Thirty-third Adult Heart Transplantation Report—2016; Focus Theme: Primary Diagnostic Indications for Transplant. Journal of Heart and Lung Transplantation, 2016. 35(10), 1158–1169. https://doi.org/10.1016/j.healun.2016.08.017 38. Manzi J., Hoff C.O., Ferreira R., Glehn-Ponsirenas R., Selvaggi G., et al. Cell-Free DNA as a Surveillance Tool for Hepatocellular Carcinoma Patients after Liver Transplant. Cancers, 2023. 15(12), 3165. https://doi.org/10.3390/cancers15123165 39. Masarone D., Kittleson M.M., Falco L., Martucci M. L., Catapano D., Brescia B., Petraio A., De Feo M., Pacileo, G. The ABC of Heart Transplantation-Part 1: Indication, Eligibility, Donor Selection, and Surgical Technique. Journal of clinical medicine, 2023. 12(16), 5217. https://doi.org/10.3390/jcm12165217 40. Mensah G, Fuster V, Murray C. et al. Global Burden of Cardiovascular Diseases and Risks, 1990-2022. J Am Coll Cardiol. 2023 Dec, 82 (25) 2350–2473. https://doi.org/10.1016/j.jacc.2023.11.007 41. North P. E., Ziegler E., Mahnke D.K., Stamm K.D., Thomm A., Daft P., Goetsch M., Liang H.L., Baker M.A., Vepraskas A. et al. Cell-free DNA donor fraction analysis in pediatric and adult heart transplant patients by multiplexed allele-specific quantitative PCR: Validation of a rapid and highly sensitive clinical test for stratification of rejection probability. PloS one, 2020. 15(1), e0227385. https://doi.org/10.1371/journal.pone.0227385 42. Oellerich M., Budde K., Osmanodja B., Bornemann-Kolatzki K., Beck J., Schütz E., Walson P.D. Donor-derived cell-free DNA as a diagnostic tool in transplantation. Frontiers in genetics, 2022. 13, 1031894. https://doi.org/10.3389/fgene.2022.1031894 43. Oellerich M., Christenson R.H., Beck J., Schütz E., Sherwood K., Price C.P., Keown P.A., Walson P.D. Donor-Derived Cell-Free DNA Testing in Solid Organ Transplantation: A Value Proposition. The journal of applied laboratory medicine, 2020. 5(5), 993–1004. https://doi.org/10.1093/jalm/jfaa062 44. Park S., Guo K., Heilman R.L., Poggio E.D., Taber D.J., Marsh C.L., Kurian S.M., Kleiboeker S., Weems J., Holman J., et al. Combining Blood Gene Expression and Cellfree DNA to Diagnose Subclinical Rejection in Kidney Transplant Recipients. Clinical journal of the American Society of Nephrology: CJASN, 2021. 16(10), 1539–1551. https://doi.org/10.2215/CJN.05530421 45. Pergola V., Mattesi G., Cozza E., Pradegan N., Tessari C., Dellino C.M., Savo M.T., Amato F., Cecere A., et al. New Non-Invasive Imaging Technologies in Cardiac Transplant Follow-Up: Acquired Evidence and Future Options. Diagnostics (Basel, Switzerland), 2023. 13(17), 2818. https://doi.org/10.3390/diagnostics13172818 46. Pham M.X., Teuteberg J.J., Kfoury A.G., Starling R.C., Deng M.C., Cappola T.P. et al. IMAGE Study Group. Gene-expression profiling for rejection surveillance after cardiac transplantation. The New England journal of medicine, 2010. 362(20), 1890–1900. https://doi.org/10.1056/NEJMoa0912965 47. Qian X., Shah P., Agbor-Enoh S. Noninvasive biomarkers in heart transplant: 2020-2021 year in review. Current opinion in organ transplantation. 2022, 27(1), 7–14. https://doi.org/10.1097/MOT.0000000000000945 48. Ragalie W.S., Stamm K., Mahnke D., Liang H.L., Simpson P., Katz R., et al. Noninvasive Assay for Donor Fraction of Cell-Free DNA in Pediatric Heart Transplant Recipients. Journal of the American College of Cardiology, 2018. 71(25), 2982–2983. https://doi.org/10.1016/j.jacc.2018.04.026 49. Richmond M.E., Zangwill S.D., Kindel S.J., Deshpande S.R. et al. Donor fraction cell-free DNA and rejection in adult and pediatric heart transplantation. The Journal of heart and lung transplantation: the official publication of the International Society for Heart Transplantation, 2020. 39(5), 454–463. https://doi.org/10.1016/j.healun.2019.11.015 50. Rosenheck J.P., Keller B.C., Fehringer G., Demko Z.P., Bohrade S.M., Ross D.J. Why Cell-Free DNA Can Be a "Game Changer" for Lung Allograft Monitoring for Rejection and Infection. Current pulmonology reports, 2022. 11(3), 75–85. https://doi.org/10.1007/s13665-022-00292-8 51. Sanchez-Lazaro C., Jordán-de Luna L., Almenar-Bonet L., Martinez-Dolz J., Poveda-Andres A., Salvador-Sanz. Single Nucleotide Polymorphisms, SNPs, Associated With the Efficacy and Security of Immunosuppressive Treatment in Heart Transplantation. The Journal of Heart and Lung Transplantation, 2014. 33(4), 146. https://doi.org/10.1016/j.healun.2014.01.392 52. Shah P., Bristow M.R., Port J.D. MicroRNAs in Heart Failure, Cardiac Transplantation, and Myocardial Recovery: Biomarkers with Therapeutic Potential. Current heart failure reports, 2017. 14(6), 454–464. https://doi.org/10.1007/s11897-017-0362-8 53. Shannon C.P., Hollander Z., Dai D.L. Y., Chen V., Assadian S., Lam K.K., McManus J.E., Zarzycki M., Kim Y., Kim J.V. et al. HEARTBiT: A Transcriptomic Signature for Excluding Acute Cellular Rejection in Adult Heart Allograft Patients. The Canadian journal of cardiology, 2020. 36(8), 1217–1227. https://doi.org/10.1016/j.cjca.2019.11.017 54. Snyder T.M., Khush K.K., Valantine H.A., Quake S.R. Universal noninvasive detection of solid organ transplant rejection. Proceedings of the National Academy of Sciences of the United States of America, 2011.108(15), 6229–6234. https://doi.org/10.1073/pnas.1013924108 55. Sorbini M., Togliatto G.M., Simonato E., Boffini M., Cappuccio M. et al. HLA-DRB1 mismatch-based identification of donor-derived cell free DNA (dd-cfDNA) as a marker of rejection in heart transplant recipients: A single-institution pilot study. The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation, 2021. 40(8), 794–804. https://doi.org/10.1016/j.healun.2021.05.001 56. Sorbini M., Togliatto G., Mioli F., Simonato E., Marro M., Cappuccio M., Arruga F., Caorsi C. et al. Validation of a Simple, Rapid, and Cost-Effective Method for Acute Rejection Monitoring in Lung Transplant Recipients. Transplant international: official journal of the European Society for Organ Transplantation, 2022. 35, 10546. https://doi.org/10.3389/ti.2022.10546 57. Sukma Dewi I., Celik S., Karlsson A., Hollander Z., Lam K. et al. Exosomal miR-142-3p is increased during cardiac allograft rejection and augments vascular permeability through down-regulation of endothelial RAB11FIP2 expression. Cardiovascular research, 2017. 113(5), 440–452. https://doi.org/10.1093/cvr/cvw244 58. Sun K., Jiang P., Chan K.C., Wong J., Cheng Y.K., Liang R.H., Chan W.K. Plasma DNA tissue mapping by genome-wide methylation sequencing for noninvasive prenatal, cancer, and transplantation assessments. Proceedings of the National Academy of Sciences of the United States of America, 2015. 112(40), E5503–E5512. https://doi.org/10.1073/pnas.1508736112 59. Tarazón E., Pérez-Carrillo L., García-Bolufer P., Triviño J.C., Feijóo-Bandín S. et al. Circulating mitochondrial genes detect acute cardiac allograft rejection: Role of the mitochondrial calcium uniporter complex. American journal of transplantation: official journal of the American Society of Transplantation and the American Society of Transplant Surgeons, 2021. 21(6), 2056–2066. https://doi.org/10.1111/ajt.16387 60. Tseng A.S., Gorsi U.S., Barros-Gomes S., Miller F. A., et al. Use of speckle-tracking echocardiography-derived strain and systolic strain rate measurements to predict rejection in transplant hearts with preserved ejection fraction. BMC cardiovascular disorders, 2018. 18(1), 241. https://doi.org/10.1186/s12872-018-0980-4 61. Van Aelst L.N., Papageorgiou A., Li S., Gupta S.K., Carai P., Van Cleemput J., Heymans S. MicroRNA-155 promotes acute cardiac allograft rejection in human and mice. European Heart Journal, 2013. 34(suppl 1), 1601–1601. https://doi.org/10.1093/eurheartj/eht308.1601 62. Velleca A., Shullo M.A., Dhital K., Azeka E., Colvin M., DePasquale E., Farrero M., García-Guereta L., Jamero G. et al. The International Society for Heart and Lung Transplantation (ISHLT) guidelines for the care of heart transplant recipients. The Journal of heart and lung transplantation: the official publication of the International Society for Heart Transplantation, 2023. 42(5), e1–e141. https://doi.org/10.1016/j.healun.2022.10.015 63. Vermes E., Pantaléon C., Auvet A., Cazeneuve N., Machet M.C., Delhommais A., Bourguignon T., Aupart M., Brunereau L. Cardiovascular magnetic resonance in heart transplant patients: diagnostic value of quantitative tissue markers: T2 mapping and extracellular volume fraction, for acute rejection diagnosis. Journal of cardiovascular magnetic resonance: official journal of the Society for Cardiovascular Magnetic Resonance, 2018. 20(1), 59. https://doi.org/10.1186/s12968-018-0480-9 64. Yusuf S., Reddy S., Ounpuu S., Anand S. Global burden of cardiovascular diseases: Part II: variations in cardiovascular disease by specific ethnic groups and geographic regions and prevention strategies. Circulation, 2001. 104(23), 2855-2864/ 65. Zhakhina G., Gusmanov A., Sakko Y., Yerdessov S., Mussina K., Gaipov A. Burden of heart failure in Kazakhstan: data from the unified national healthcare system 2014-2021. The European Journal of Public Health, 2023. 33 (Suppl 2), ckad160.1274. https://doi.org/10.1093/eurpub/ckad160.1274
Количество просмотров: 153

Ключевые слова:

Категория статей: Обзор литературы

Библиографическая ссылка

Баянова М.Ф., Аскербекова А.Т., Назарова Л.К., Абдикадирова А.Б., Сапаргалиева М.Е., Малик Д.Б., Мырзахметова Г.Ш., Пя Ю.В., Болатов А.К. Генетические биомаркеры острого отторжения трансплантата после трансплантации сердца // Наука и Здравоохранение. 2024. Т.26 (4). С. 177-189. doi 10.34689/SH.2024.26.4.021

Авторизируйтесь для отправки комментариев