Background: Radiation therapy is a necessary component of breast cancer complex treatment program, that reducing the frequency of relapses and increasing the life expectancy of patients. Daily fractions use of 2 Gy to a total focal dose of 50 Gy is the traditional standard scheme for radiotherapy treatment. However, like any other treatment method, radiation therapy provides a variety of adverse effects on normal tissues in the irradiated field. Acute radiation reactions of the skin are one of the most frequent side effects of this type of treatment. A practical solution to the problem is development of acceptable treatment regimens to achieve better local control with a minimal risk of toxic effects for normal tissues.

The aim of the present study is the incidence assessment of skin toxicity after a daily using of 2.7 Gy to a total dose of 43.2 Gy to the patient’s breast

Methods: Study design is non-randomized clinical trial. From 2014 to 2017 years, 160 women with breast cancers, who were treated by the hypofractionated radiation therapy after surgical operations. The skin toxicity was examined at the end of the treatment, 3 and 6 months after treatment by the international scale for assessing criteria of acute radiation reactions developed by the American Radiation Therapy Oncology Group (RTOG, 1995). Mann-Whitney U test was used for comparing acute toxicity rate between patients treated with hypofractionation and traditional radiotherapy. A p value of ˂0.05 was taken as significant. The whole analysis was performed with SPSS ver.20 software.

Results: It was designated that skin of the patients is well tolerated for hypofractionated radiotherapy, due to lower fractional doses of radiation it gives good results: more than 80% of patients had no toxicities at all with the treated schedule. The rate of mild toxicity (> grade 2) was minimum in these patients (p=0.023).

Conclusions: The use of hypofractionated regime of radiation therapy does not increase normal tissues damage and frequency of acute radiation complications. However, some toxic events may take time to develop.

Yеvgeniya O. Kossymbayeva, http//

Tasbolat A. Adylkhanov, http//

Ainur S. Baissalbayeva, http//

Semey State Medical University,

Oncology and radiology department,

Semey, Kazakhstan

1. Ali S.Y., Reddy M.H., Hussain S.F. Cutaneous effects of radiotherapy- a review article // Innov. J. Med. Heal. Sci. 2014. Vol. 4. № 1. p. 341–349.

2. Bellon J.R. et al. Conservative surgery and radiation- stage I and II breast cancer // Am. Coll. Radiol. 2015. p. 1–14.

3. Bernier J., Hall E.J., Giaccia A. Radiation oncology: a century of achievements // Nat. Rev. 2004. Vol. 4. p. 737–747.

4. Beysebayev E. et al. Spatial and Temporal Epidemiological Assessment of Breast Cancer Incidence and Mortality in Kazakhstan, 1999-2013 // Asian Pac. J. Cancer Prev. 2015. Vol. 16. № 15. p. 6795.

5. Ciammella P. et al. Toxicity and cosmetic outcome of hypofractionated whole-breast radiotherapy: predictive clinical and dosimetric factors. // Radiat. Oncol. 2014. Vol. 9. № 1. p. 97.

6. Correa C. et al. Accelerated Partial Breast Irradiation: Update of an ASTRO Evidence-Based Consensus Statement Conflict of Interest Disclosure Statement // Pract. Radiat. Oncol. 2017. p. 1–26.

7. Cox J.D., Stetz J., Pajak T.F. Toxicity criteria of the Radiation Therapy Oncology Group (RTOG) and the European Organization for Research and Treatment of Cancer (EORTC) // Int J Radiat Oncol Biol Phys. 1995. Vol. 31. № 5. p. 1341–1346.

8. Davis N.M. et al. Deregulation of the EGFR/PI3K/PTEN/Akt/mTORC1 pathway in breast cancer: possibilities for therapeutic intervention // Oncotarget. 2014. Vol. 5. № 13. p. 4603–4650.

9. Engai D.A., Poddubnaya I.V., Tupitsyn N.N. Immunophenotype of stage IIb breast cancer cells. // Sib. Oncol. journal. 2007. Vol. 4. № 24. p. 66–69.

10. Haffty B.G. Long-Term Results of Hypofractionated Radiation Therapy for Breast Cancer // Yearb. Oncol. 2010. Vol. 2010. p. 32–33.

11. Haviland J.S. et al. The UK Standardisation of Breast Radiotherapy (START) trials of radiotherapy hypofractionation for treatment of early breast cancer: 10-year follow-up results of two randomised controlled trials // Lancet Oncol. 2013. Vol. 14. № 11. p. 1086–1094.

12. Jemal A. et al. Global cancer statistics // CA. Cancer J. Clin. 2011. Vol. 61. № 2. p. 69–90.

13. Kim K.S. et al. Hypofractionated whole breast irradiation: new standard in early breast cancer after breast-conserving surgery // Radiat. Oncol. J. 2016. Vol. 34. № 2. p. 81–87.

14. Los Santos J.F. De. Uptake and costs of hypofractionated vs conventional whole breast irradiation after breast conserving surgery in the United States, 2008-2013 // Breast Dis. 2015. Vol. 26. № 3. p. 243–245.

15. Naghavi M. The global burden of cancer 2013 // JAMA Oncol. 2015. Vol. 4. № 1. p. 52.

16. Rasskazova E.A. Retsidivy raka molochnoi zhelezy posle podkozhnykh radikalnykh mastektomii s odnomomentnoi rekonstruktsiei. // Oncology. 2014. Vol. 34. № 1. p. 24–28.

17. Slater J.M. From X-Rays to Ion Beams: A Short History of Radiation Therapy // Ion beam therapy. Loma Linda, 2012. p. 14.

18. Smith B.D. et al. Fractionation for whole breast irradiation: An American society for radiation oncology (ASTRO) evidence-based guideline // Int. J. Radiat. Oncol. Biol. Phys. 2011. Vol. 81. № 1. p. 59–68.

19. Smittenaar C.R. et al. Cancer incidence and mortality projections in the UK until 2035 // Br. J. Cancer. 2016. Vol. 115. p. 1147–1155.

20. Snegirev A.A., Grigorenko A.A. Therapeutic pathomorphosis as predictor of breast cancer treatment efficacy // Sib. Oncol. J. 2007. Vol. 3. p. 134–137.

21. Sudhakar A. History of Cancer, Ancient and Modern Treatment Methods History of Cancer // J Cancer Sci Ther. 2009. Vol. 2. № 1. p. 132-134.

: 2054

Kossymbayeva Yе.O., Adylkhanov T.A., Baissalbayeva A.S. Skin toxicity after hypofractionated radiotherapy in the complex treatment program of breast cancer . Nauka i Zdravookhranenie [Science & Healthcare]. 2017, 4, pp. 63-70.