ПОСТКОВИДНЫЙ СИНДРОМ. ОБЗОР ЛИТЕРАТУРЫ
Введение: Коронавирусы являются важными патогенами человека и животных. В конце 2019 года новый коронавирус был идентифицирован, как причина группы случаев пневмонии в Ухане, городе в китайской провинции Хубэй. Он быстро распространился, что привело к эпидемии по всему Китаю, за которой последовала глобальная пандемия.
Цель: проанализировать и систематизировать публикации, посвященные вопросам изучения клинико-лабораторных маркеров постковидного синдрома.
Стратегия поиска: поиск литературы был осуществлен в электронных базах PubMed, The Cochrane library, Google Scholar и e-library по ключевым словам (COVID-19, маркеры постковидного синдрома, варианты SARS-CoV-2, длительные проявления COVID-19, постковидные осложнения). Релевантные работы, отражающие характеристики проблемы были приняты для описания в обзоре.
Результаты: Длительные проявления COVID-19 включают поражения со стороны дыхательной, сердечно-сосудистой, почечной, эндокринной, репродуктивной, центральной нервной системы, желудочно-кишечного тракта и печени, а также воспалительные, аутоиммунные и ревматологические осложнения, хроническую боль, хроническую усталость. Психиатрическое/эмоциональное здоровье и благополучие страдает, что приводит к ухудшению качества жизни пациентов.
Выводы: Крайне важно определить, какие пациенты находятся в группе риска, а какие потребуют длительного наблюдения. Существует большая потребность в стратегиях в отношении процессов скрининга, предоставления ресурсов, утвержденных путей оказания помощи и многопрофильных реабилитационных услуг.
Жанар М. Жуманбаева1, Алтынай М. Досбаева1, Айнур С. Крыкпаева1, Аскар С. Серикбаев1, Куралай Ш. Амренова1, Алуа М. Шарапиева1,
Ринат Н. Кудайбергенов1, Konrad Juszkiewicz2, Сабит М. Жусупов3
1 НАО «Медицинский университет Семей», г. Семей, Республика Казахстан;
2 Медицинский университет, г. Люблин, Польша;
3 Павлодарский филиал НАО «Медицинский университет Семей», г. Павлодар, Республика Казахстан.
1. Alharthy A. [et al.]. Residual Lung Injury in Patients Recovering From COVID-19 Critical Illness // Journal of Ultrasound in Medicine. 2021. № 9 (40). C. 1823–1838.
2. Apicella M. [et al.]. COVID-19 in people with diabetes: understanding the reasons for worse outcomes // The Lancet Diabetes & Endocrinology. 2020. № 9 (8). C. 782–792.
3. Arnold D.T. [et al.]. Patient outcomes after hospitalisation with COVID-19 and implications for follow-up: results from a prospective UK cohort // Thorax. 2021. № 4 (76). C. 399–401.
4. Ayoubkhani D. [et al.]. Post-covid syndrome in individuals admitted to hospital with covid-19: retrospective cohort study // BMJ. 2021. (372).
5. Bandyopadhyay D. [et al.]. COVID-19 Pandemic: Cardiovascular Complications and Future Implications // American Journal of Cardiovascular Drugs. 2020. № 4 (20). C. 311–324.
6. Boika A.V. A Post-COVID-19 Parkinsonism in the Future? // Movement Disorders. 2020. № 7 (35). C. 1094–1094.
7. Brancatella A. [et al.]. Subacute Thyroiditis After Sars-COV-2 Infection // The Journal of Clinical Endocrinology & Metabolism. 2020. № 7 (105). C. 2367–2370.
8. Cares-Marambio K. [et al.]. Prevalence of potential respiratory symptoms in survivors of hospital admission after coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis // Chronic Respiratory Disease. 2021. (18). C. 1–12.
9. Carfì A., Bernabei R., Landi F. Persistent symptoms in patients after acute COVID-19 // JAMA - Journal of the American Medical Association. 2020. № 6 (324). C. 603–605.
10. Carvalho-Schneider C. [et al.]. Follow-up of adults with noncritical COVID-19 two months after symptom onset // Clinical Microbiology and Infection. 2021. № 2 (27). C. 258–263.
11. Chaná-Cuevas P. [et al.]. The Potential Role of SARS-COV-2 in the Pathogenesis of Parkinson’s Disease // Frontiers in Neurology. 2020. (11). C. 1044.
12. Chen X. [et al.]. A systematic review of neurological symptoms and complications of COVID-19 // Journal of Neurology. 2021. № 2 (268). C. 392–402.
13. Chopra V. [et al.]. Sixty-Day Outcomes Among Patients Hospitalized With COVID-19 // https://doi.org/10.7326/M20-5661. 2020. № 4 (174). C. 576–578.
14. Cohen M.E. [et al.]. A case of probable Parkinson’s disease after SARS-CoV-2 infection // The Lancet Neurology. 2020. № 10 (19). C. 804–805.
15. Crameri G.A.G. [et al.]. Reduced maximal aerobic capacity after COVID-19 in young adult recruits, Switzerland, May 2020 // Eurosurveillance. 2020. № 36 (25). C. 2001542.
16. Donath M.Y., Shoelson S.E. Type 2 diabetes as an inflammatory disease // Nature Reviews Immunology 2011 11:2. 2011. № 2 (11). C. 98–107.
17. Ellul M.A. [et al.]. Neurological associations of COVID-19 // The Lancet Neurology. 2020. № 9 (19). C. 767–783.
18. Fang Y. [et al.]. Pulmonary fibrosis in critical ill patients recovered from COVID-19 pneumonia: Preliminary experience // The American Journal of Emergency Medicine. 2020. № 10 (38). C. 2134–2138.
19. Frija-Masson J. [et al.]. Functional characteristics of patients with SARS-CoV-2 pneumonia at 30 days post-infection // European Respiratory Journal. 2020. № 2 (56).
20. Garrigues E. [et al.]. Post-discharge persistent symptoms and health-related quality of life after hospitalization for COVID-19 // Journal of Infection. 2020. № 6 (81). C. e4–e6.
21. Gorbalenya A.E. [et al.]. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2 // Nature microbiology. 2020. № 4 (5). C. 536–544.
22. Gutierrez Amezcua J.M. [et al.]. COVID-19-Induced Neurovascular Injury: a Case Series with Emphasis on Pathophysiological Mechanisms // SN Comprehensive Clinical Medicine. 2020. № 11 (2). C. 2109–2125.
23. Halpin S.J. [et al.]. Postdischarge symptoms and rehabilitation needs in survivors of COVID-19 infection: A cross-sectional evaluation // Journal of Medical Virology. 2021. № 2 (93). C. 1013–1022.
24. Hascup E.R., Hascup K.N. Does SARS-CoV-2 infection cause chronic neurological complications? // GeroScience 2020 42:4. 2020. № 4 (42). C. 1083–1087.
25. Hoffmann M. [et al.]. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor // Cell. 2020. № 2 (181). C. 271-280.e8.
26. Huang C. [et al.]. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study // The Lancet. 2021. № 10270 (397). C. 220–232.
27. Huang L. [et al.]. Cardiac Involvement in Patients Recovered From COVID-2019 Identified Using Magnetic Resonance Imaging // JACC: Cardiovascular Imaging. 2020. № 11 (13). C. 2330–2339.
28. Huang W. [et al.]. The potential indicators for pulmonary fibrosis in survivors of severe COVID-19 // Journal of Infection. 2021. № 2 (82). C. e5–e7.
29. Iwashyna T.J. [et al.]. Long-term Cognitive Impairment and Functional Disability Among Survivors of Severe Sepsis // JAMA. 2010. № 16 (304). C. 1787–1794.
30. Johansson M. [et al.]. Long-Haul Post–COVID-19 Symptoms Presenting as a Variant of Postural Orthostatic Tachycardia Syndrome: The Swedish Experience // JACC: Case Reports. 2021. № 4 (3). C. 573–580.
31. Kosugi E.M. [et al.]. Incomplete and late recovery of sudden olfactory dysfunction in COVID-19 // Brazilian Journal of Otorhinolaryngology. 2020. № 4 (86). C. 490–496.
32. Lau S.K.P. [et al.]. Delayed induction of proinflammatory cytokines and suppression of innate antiviral response by the novel Middle East respiratory syndrome coronavirus: Implications for pathogenesis and treatment // Journal of General Virology. 2013. № PART 12 (94). C. 2679–2690.
33. Leung T.Y.M. [et al.]. Short- and potential long-term adverse health outcomes of COVID-19: a rapid review // Emerging Microbes and Infections. 2020. № 1 (9). C. 2190–2199.
34. Lu Y. [et al.]. Cerebral Micro-Structural Changes in COVID-19 Patients – An MRI-based 3-month Follow-up Study: A brief title: Cerebral Changes in COVID-19 // EClinicalMedicine. 2020. (25). C. 100484.
35. Major J. [et al.]. Type I and III interferons disrupt lung epithelial repair during recovery from viral infection // Science. 2020. № 6504 (369). C. 712–717.
36. Mateu-Salat M., Urgell E., Chico A. SARS-COV-2 as a trigger for autoimmune disease: report of two cases of Graves’ disease after COVID-19 // Journal of Endocrinological Investigation 2020 43:10. 2020. № 10 (43). C. 1527–1528.
37. Miners S., Kehoe P.G., Love S. Cognitive impact of COVID-19: looking beyond the short term // Alzheimer’s Research & Therapy 2020 12:1. 2020. № 1 (12). C. 1–16.
38. Moreno-Pérez O. [et al.]. Post-acute COVID-19 syndrome. Incidence and risk factors: A Mediterranean cohort study // Journal of Infection. 2021. № 3 (82). C. 378–383.
39. Ng M.Y. [et al.]. Patients Recovered From COVID-19 Show Ongoing Subclinical Myocarditis as Revealed by Cardiac Magnetic Resonance Imaging // JACC: Cardiovascular Imaging. 2020. № 11 (13). C. 2476–2478.
40. Nguyen Y. [et al.]. Virus detection and semiquantitation in explanted heart tissues of idiopathic dilated cardiomyopathy adult patients by use of PCR coupled with mass spectrometry analysis // Journal of Clinical Microbiology. 2013. № 7 (51). C. 2288–2294.
41. Ojo A.S. [et al.]. Pulmonary Fibrosis in COVID-19 Survivors: Predictive Factors and Risk Reduction Strategies // Pulmonary Medicine. 2020. (2020).
42. Pan F. [et al.]. Time course of lung changes at chest CT during recovery from Coronavirus disease 2019 (COVID-19) // Radiology. 2020. № 3 (295). C. 715–721.
43. Paterson R.W. [et al.]. The emerging spectrum of COVID-19 neurology: clinical, radiological and laboratory findings // Brain. 2020. № 10 (143). C. 3104–3120.
44. Pizzini A. [et al.]. Impact of Vitamin D Deficiency on COVID-19—A Prospective Analysis from the CovILD Registry // Nutrients 2020, Vol. 12, Page 2775. 2020. № 9 (12). C. 2775.
45. Puntmann V.O. [et al.]. Outcomes of Cardiovascular Magnetic Resonance Imaging in Patients Recently Recovered From Coronavirus Disease 2019 (COVID-19) // JAMA Cardiology. 2020. № 11 (5). C. 1265–1273.
46. Rajpal S. [et al.]. Cardiovascular Magnetic Resonance Findings in Competitive Athletes Recovering From COVID-19 Infection // JAMA Cardiology. 2021. № 1 (6). C. 116–118.
47. Raman B. [et al.]. Medium-term effects of SARS-CoV-2 infection on multiple vital organs, exercise capacity, cognition, quality of life and mental health, post-hospital discharge // EClinicalMedicine. 2021. (31). C. 100683.
48. Rathore F.A., Ilyas A. Post-Intensive Care Syndrome and COVID-19: Crisis After a Crisis? // Heart, Lung and Circulation. 2020. № 12 (29). C. 1893–1894.
49. Richardson S. [et al.]. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area // JAMA. 2020. № 20 (323). C. 2052–2059.
50. Rosales-Castillo A., García de los Ríos C., Mediavilla García J.D. Persistencia de manifestaciones clínicas tras la infección COVID-19: importancia del seguimiento // Medicina Clínica. 2021. № 1 (156). C. 35–36.
51. Saloner B. [et al.]. Persistent Symptoms in Patients After Acute COVID-19 // JAMA. 2020. № 6 (324). C. 603–605.
52. Salvio G. [et al.]. Bone Metabolism in SARS-CoV-2 Disease: Possible Osteoimmunology and Gender Implications // Clinical Reviews in Bone and Mineral Metabolism. 2020. № 4 (18). C. 51–57.
53. Sardari A. [et al.]. Myocarditis detected after COVID-19 recovery // European Heart Journal - Cardiovascular Imaging. 2021. № 1 (22). C. 131–132.
54. Sasannejad C., Ely E.W., Lahiri S. Long-term cognitive impairment after acute respiratory distress syndrome: A review of clinical impact and pathophysiological mechanisms // Critical Care. 2019. № 1 (23). C. 1–12.
55. Schwensen H.F. [et al.]. Fatal pulmonary fibrosis: a post-COVID-19 autopsy case // Journal of Clinical Pathology. 2021. № 6 (74). C. 400–402.
56. Shah A.S. [et al.]. A prospective study of 12-week respiratory outcomes in COVID-19-related hospitalisations // Thorax. 2021. № 4 (76). C. 402–404.
57. Sudre C.H. [et al.]. Attributes and predictors of long COVID // Nature medicine. 2021. № 4 (27). C. 626–631.
58. Troyer E.A., Kohn J.N., Hong S. Are we facing a crashing wave of neuropsychiatric sequelae of COVID-19? Neuropsychiatric symptoms and potential immunologic mechanisms // Brain, Behavior, and Immunity. 2020. (87). C. 34–39.
59. Valent A. [et al.]. Three-month quality of life in survivors of ARDS due to COVID-19: A preliminary report from a French academic centre // Anaesthesia Critical Care & Pain Medicine. 2020. № 6 (39). C. 740–741.
60. Wei J. [et al.]. WITHDRAWN: Analysis of thin-section CT in patients with coronavirus disease (COVID-19) after hospital discharge // Clinical Imaging. 2020.
61. Wong C.K. [et al.]. Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome // Clinical and Experimental Immunology. 2004. № 1 (136). C. 95–103.
62. Wu Y. [et al.]. Nervous system damage after COVID-19 infection: Presence or absence? // Brain, Behavior, and Immunity. 2020. (87). C. 55.
63. Xiong Q. [et al.]. Clinical sequelae of COVID-19 survivors in Wuhan, China: a single-centre longitudinal study // Clinical Microbiology and Infection. 2021. № 1 (27). C. 89–95.
64. Xu J. [et al.]. SARS-CoV-2 induces transcriptional signatures in human lung epithelial cells that promote lung fibrosis // Respiratory Research. 2020. № 1 (21). C. 1–12.
65. You J. [et al.]. Anormal pulmonary function and residual CT abnormalities in rehabilitating COVID-19 patients after discharge // Journal of Infection. 2020. № 2 (81). C. e150–e152.
66. Yu M. [et al.]. Prediction of the Development of Pulmonary Fibrosis Using Serial Thin-Section CT and Clinical Features in Patients Discharged after Treatment for COVID-19 Pneumonia // Korean Journal of Radiology. 2020. № 6 (21). C. 746–755.
67. Zhang C. [et al.]. Discharge may not be the end of treatment: Pay attention to pulmonary fibrosis caused by severe COVID-19 // Journal of Medical Virology. 2021. № 3 (93). C. 1378–1386.
68. Zhao Y. miao [et al.]. Follow-up study of the pulmonary function and related physiological characteristics of COVID-19 survivors three months after recovery // EClinicalMedicine. 2020. (25). C. 100463.
69. Zhou P. [et al.]. A pneumonia outbreak associated with a new coronavirus of probable bat origin // Nature. 2020. № 7798 (579). C. 270–273.
70. WHO Director-General’s remarks at the media briefing on 2019-nCoV on 11 February 2020.
71. COVID-19 rapid guideline: managing the long-term effects of COVID-19. London: National Institute for Health and Care Excellence (NICE); 2020 Dec 18. PMID: 33555768.
72. Post-COVID Syndrome: What Should You Do If You Have Lingering COVID-19 Symptoms? | Houston Methodist On Health. https://www.houstonmethodist.org/global/why-choose-houston-methodist/blog/2020/nov/post-covid-syndrome-what-should-you-do-if-you-have-lingering-covid-19-symptoms/
73. World Health Organization. Emergency use ICD codes for COVID-19 disease outbreak. Available from: https://www.who.int/classifications/icd/covid19/en/. Accessed March 28, 2020.
74. ICD 10 - 10th revision of the International Classification of Diseases. https://www.cdc.gov/nchs/icd/icd10.htm.
Number of Views: 209
Category of articles:
Reviews
Bibliography link
Жуманбаева Ж.М., Крыкпаева А.С., Серикбаев А.С., Досбаева А.М., Амренова К.Ш., Шарапиева А.М., Кудайбергенов Р.Н., Juszkiewicz K., Жусупов С.М. Постковидный синдром. Обзор литературы // Наука и Здравоохранение. 2022. 5(Т.24). С. 45-51. doi 10.34689/SH.2022.24.5.006Related publications:
EVIDENCE-BASED NURSING PRACTICE. LITERATURE REVIEW
DEVELOPMENT OF AN ALGORITHM FOR DISPENSARY OBSERVATION OF PATIENTS WHO UNDERWENT CORONARY ARTERY BYPASS GRAFTING
PSYCHOEMOTIONAL STATUS IN PATIENTS WITH CHRONIC HEART FAILURE. LITERATURE REVIEW.
ENDOSCOPIC TREATMENT OF BLEEDING OF THE UPPER GASTROINTESTINAL TRACT.LITERARY REVIEW.
ACTUAL PROBLEMS OF THE USE MODERN INTRAMEDULLARY TELESCOPIC RODS USED IN THE SURGICAL TREATMENT OF OSTEOGENESIS IMPERFECTA IN CHILDREN. REVIEW.