REVIEW OF ANTIMICROBIAL PROPERTIES OF HONEY CHEMICAL CONSTITUENTS - PART I
Introduction. From the perspective of biochemistry, honey is the multi-component solution with the unique healing properties. The application of medical honey preparations in clinical medicine, particularly for skin disorders and wound healing, might be attributed to the antimicrobial activity of honey. Objective. The current review's objective is to describe the data that currently exists for the antibacterial properties of certain phytochemicals found in honey. Search strategy: The following databases were searched for sources: Pubmed, ResearchGate, Cyberleninka, and eLibrary. Research on humans and animals, primary studies (descriptive and analytical studies, clinical trials), secondary studies (systematic reviews and meta-analyses), instructional manuals, clinical guidelines and protocols, and full-text publications in both Russian and English were the inclusion criteria. Results and Conclusion. The antibacterial properties of honey can be explained by some physical and chemical parameters such as its high osmolarity, acidity (pH 3.4-6.1), hydrogen peroxide activity, high concentration of sugar. There is the growing evidence that the antimicrobial characteristics of honey are strongly associated with the content of the different minor components including bee defensin-1, flavonoids, and polyphenols. Methylglyoxal contained in Manuka honey of New Zealand origin is one of the most investigated phytochemicals in that light. However, the antibacterial activity of other honey constituents against the Gram-positive and Gram-negative microorganisms is the meaningful aim of multiple studies.
Laura T. Kassym1*, https://orcid.org/0000-0003-4448-6455 Assiya A. Kussainova2, https://orcid.org/0000-0002-5738-0804 Saltanat M. Adilgozhina2, Dana K. Kozhakhmetova2, https://orcid.org/0000-0002-8367-1461 Madiana S. Zhokebaeva2, Zhanar A. Zhagiparova3, https://orcid.org/0000-0002-5619-3505 Gulmira A. Derbisalina1, https://orcid.org/0000-0003-3704-5061 1 NJSC "Astana Medical University", Astana, Republic of Kazakhstan; 2 NJSC "Semey Medical University", Semey, Republic of Kazakhstan; 3 Al-Farabi Kazakh National University Higher School of Public Health, Almaty, Republic of Kazakhstan.
1. Alangari A.A., Morris K., Lwaleed B.A., Lau L., Jones K., Cooper R., Jenkins R. Honey is potentially effective in the treatment of atopic dermatitis: Clinical and mechanistic studies // Immunity, inflammation and disease, 2017. 5(2), 190–199. https://doi.org/10.1002/iid3.153 2. Almasaudi S. The antibacterial activities of honey // Saudi J Biol Sci. 2021 Apr. 28(4):2188-2196. doi: 10.1016/j.sjbs.2020.10.017. Epub 2020 Oct 16. PMID: 33911935, PMCID: PMC8071826. 3. Al-Waili N.S. Therapeutic and prophylactic effects of crude honey on chronic seborrheic dermatitis and dandruff // European journal of medical research, 2001. 6(7), 306–308. 4. Al-Waili N.S. Topical application of natural honey, beeswax and olive oil mixture for atopic dermatitis or psoriasis: partially controlled, single-blinded study // Complementary therapies in medicine, 2003. 11(4), 226–234. https://doi.org/10.1016/s0965-2299(03)00120-1 5. Al-Waili N.S. An alternative treatment for pityriasis versicolor, tinea cruris, tinea corporis and tinea faciei with topical application of honey, olive oil and beeswax mixture: an open pilot study // Complementary therapies in medicine, 2004. 12(1), 45–47. https://doi.org/10.1016/j.ctim.2004.01.002 6. Al-Waili N.S., Al-Waili F.S., Akmal M., Ali A., Salom K.Y., Al Ghamdi A.A. Effects of natural honey on polymicrobial culture of various human pathogens // Archives of medical science: 2014. 10(2), 246–250. https://doi.org/10.5114/aoms.2012.28603 7. Al-Waili N., Salom K., Al-Ghamdi A.A. Honey for wound healing, ulcers, and burns; data supporting its use in clinical practice // The Scientific World Journal, 2011. 11, 766–787. https://doi.org/10.1100/tsw.2011.78 8. Anunciato Casarini T.P., Frank L.A., Pohlmann A.R., Guterres S.S. Dermatological applications of the flavonoid phloretin. // European Journal of Pharmacology, 2020. 889, 173593. doi:10.1016/j.ejphar.2020.173593 9. Behzad S., Sureda A., Barreca D., Nabavi S.F., Rastrelli L., Nabavi S.M. Health effects of phloretin: from chemistry to medicine // Phytochemistry Reviews, 2017. 16(3), 527–533. doi:10.1007/s11101-017-9500-x 10.1007/s11101-017-9500-x 10. Birru R.L., Bein K., Bondarchuk N., Wells H., Lin Q., Di Y.P., Leikauf G.D. Antimicrobial and Anti-Inflammatory Activity of Apple Polyphenol Phloretin on Resiratory Pathogens Associated With Chronic Obstructive Pulmonary Disease // Frontiers in cellular and infection microbiology, 2021. 11, 652944. https://doi.org/10.3389/fcimb.2021.652944 11. Boo Y.C. p-Coumaric Acid as An Active Ingredient in Cosmetics: A Review Focusing on its Antimelanogenic Effects // Antioxidants (Basel, Switzerland), 2019. 8(8), 275. https://doi.org/10.3390/antiox8080275 12. Braithwaite I., Hunt A., Riley J., Fingleton J. et al. Randomised controlled trial of topical kanuka honey for the treatment of rosacea // BMJ open, 2015. 5(6), e007651. https://doi.org/10.1136/bmjopen-2015-007651 13. Brudzynski K. A current perspective on hydrogen peroxide production in honey. A review // Food chemistry, 2020. 332, 127229. https://doi.org/10.1016/j.foodchem.2020.127229 14. Burlando B., Cornara L. Honey in dermatology and skin care: a review // Journal of cosmetic dermatology, 2013. 12(4), 306–313. https://doi.org/10.1111/jocd.12058 15. Chen J., Li Q., Ye Y., Huang Z., Ruan Z., Jin N. Phloretin as both a substrate and inhibitor of tyrosinase: Inhibitory activity and mechanism // Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, 2020. 226, 117642. https://doi.org/10.1016/j.saa.2019.117642 16. Choi B.Y. Biochemical Basis of Anti-Cancer-Effects of Phloretin-A Natural Dihydrochalcone // Molecules (Basel, Switzerland), 2019. 24(2), 278. https://doi.org/10.3390/molecules24020278 17. Cianciosi D., Forbes-Hernández T.Y., Afrin S., Gasparrini M., Reboredo-Rodriguez P. et al. Phenolic Compounds in Honey and Their Associated Health Benefits: A Review // Molecules. 2018 Sep 11. 23(9):2322. doi: 10.3390/molecules23092322. PMID:30208664. PMCID: PMC6225430. 18. Dieuleveux V., Guéguen M. Antimicrobial effects of D-3-phenyllactic acid on Listeria monocytogenes in TSB-YE medium, milk, and cheese // Journal of food protection, 1998. 61(10), 1281–1285. https://doi.org/10.4315/0362-028x-61.10.1281 19. Dimitrova B., Gevrenova R., Anklam E. Analysis of phenolic acids in honeys of different floral origin by solid-phase extraction and high-performance liquid chromatography // Phytochemical analysis: PCA, 2007. 18(1), 24–32. https://doi.org/10.1002/pca.948 20. Działo M., Mierziak J., Korzun U., Preisner M., Szopa J., Kulma A. The Potential of Plant Phenolics in Prevention and Therapy of Skin Disorders // International journal of molecular sciences, 2016. 17(2), 160. https://doi.org/10.3390/ijms17020160 21. Fernandez-Cabezudo M.J., El-Kharrag R., Torab F., Bashir G., George J.A., El-Taji H., al-Ramadi B.K. Intravenous administration of manuka honey inhibits tumor growth and improves host survival when used in combination with chemotherapy in a melanoma mouse model // PloS one, 2013. 8(2), e55993. https://doi.org/10.1371/journal.pone.0055993 22. Gerez C.L., Torino M.I., Obregozo M.D., Font de Valdez G. A ready-to-use antifungal starter culture improves the shelf life of packaged bread // Journal of food protection, 2010. 73(4), 758–762. https://doi.org/10.4315/0362-028x-73.4.758 23. Gerez C.L., Torino M.I., Rollán G., Font de Valdez G. Prevention of bread mould spoilage by using lactic acid bacteria with antifungal properties // Food Control, 2009. 20(2), 144–148. doi:10.1016/j.foodcont.2008.03.005 10.1016/j.foodcont.2008.03.005 24. Girma A., Seo W. Antibacterial activity of varying UMF-graded Manuka honeys // PloS one, 2019. 14(10), e0224495. https://doi.org/10.1371/journal.pone.0224495 25. Jaganathan S.K., Supriyanto E., Mandal M. Events associated with apoptotic effect of p-Coumaric acid in HCT-15 colon cancer cells // World journal of gastroenterology, 2013. 19(43), 7726–7734. https://doi.org/10.3748/wjg.v19.i43.7726 26. Janicke B., Hegardt C., Krogh M. et al. The Antiproliferative Effect of Dietary Fiber Phenolic Compounds Ferulic Acid and p-Coumaric Acid on the Cell Cycle of Caco-2 Cells // Nutrition and Cancer, 2011. 63, 611-622. https://doi.org/10.1080/01635581.2011.538486 27. Johnston M., McBride M., Dahiya D., Owusu-Apenten R., Nigam P.S. Antibacterial activity of Manuka honey and its components: An overview // AIMS microbiology, 2018. 4(4), 655–664. https://doi.org/10.3934/microbiol.2018.4.655 28. Jull A.B., Cullum N., Dumville J.C., Westby M.J. et al. Honey as a topical treatment for wounds // The Cochrane database of systematic reviews, 2015. (3), CD005083. https://doi.org/10.1002/14651858.CD005083.pub4 29. Khan F.R., Ul Abadin Z., Rauf N. Honey: nutritional and medicinal value // International journal of clinical practice, 2007. 61(10), 1705–1707. https://doi.org/10.1111/j.1742-1241.2007.01417.x 30. Kim J., Durai P., Jeon D. et al. Phloretin as a Potent Natural TLR2/1 Inhibitor Suppresses TLR2-Induced Inflammation // Nutrients, 2018. 10(7), 868. https://doi.org/10.3390/nu10070868 31. Kum H., Roh K.B., Shin S., Jung K., Park D., Jung E. Evaluation of anti-acne properties of phloretin in vitro and in vivo // International journal of cosmetic science, 2016. 38(1), 85–92. https://doi.org/10.1111/ics.1226 32. Kumar N., Goel N. Phenolic acids: Natural versatile molecules with promising therapeutic applications // Biotechnology reports (Amsterdam, Netherlands), 2019. 24, e00370. https://doi.org/10.1016/j.btre.2019.e00370 33. Liu N., Zhang N., Zhang S., Zhang L., Liu Q. Phloretin inhibited the pathogenicity and virulence factors against // Candida albicans. Bioengineered, 2021. 12(1), 2420–2431. https://doi.org/10.1080/21655979.2021.1933824 34. Lou Z., Wang H., Rao S., Sun J., Ma C., Li J. p-Coumaric acid kills bacteria through dual damage mechanisms // Food Control, 2012. 25(2), 550–554. doi:10.1016/j.foodcont.2011.11.022 35. Maddocks S.E., Jenkins R.E. Honey: a sweet solution to the growing problem of antimicrobial resistance? // Future microbiology, 2013. 8(11), 1419–1429. https://doi.org/10.2217/fmb.13.105 36. Majtan J. Honey: an immunomodulator in wound healing // Wound repair and regeneration: official publication of the Wound Healing Society [and] the European Tissue Repair Society, 2014. 22(2), 187–192. https://doi.org/10.1111/wrr.12117 37. Mandal M.D., Mandal S. Honey: its medicinal property and antibacterial activity // Asian Pacific journal of tropical biomedicine, 2011. 1(2), 154–160. https://doi.org/10.1016/S2221-1691(11)60016-6 38. Mane S., Singer J., Corin A., Semprini A. Successful Treatment of Actinic Keratosis with Kanuka Honey // Case reports in dermatological medicine, 2018, 4628971. https://doi.org/10.1155/2018/4628971 39. Molan P., Rhodes T. Honey: A Biologic Wound Dressing // Wounds: a compendium of clinical research and practice, 2015. 27(6), 141–151. 40. Mu W., Yu S., Zhu L., Zhang T., Jiang B. Recent research on 3-phenyllactic acid, a broad-spectrum antimicrobial compound // Applied microbiology and biotechnology, 2012. 95(5), 1155–1163. https://doi.org/10.1007/s00253-012-4269-8 41. Ning Y., Yan A., Yang K., Wang Z., Li X., Jia Y. Antibacterial activity of phenyllactic acid against Listeria monocytogenes and Escherichia coli by dual mechanisms. // Food chemistry, 2017. 228, 533–540. https://doi.org/10.1016/j.foodchem.2017.01.112 42. Ohhira I., Kuwaki S., Morita H., Suzuki T., Tomita S., Hisamatsu S., Sonoki S., Shinoda S. Identification of 3-phenyllactic acid as a possible antibacterial substance produced by Enterococcus faecalis TH10. // Biocontrol Sci. 2004. 9:77–81 https://doi.org/10.4265/bio.9.77 43. Oresajo C., Stephens T., Hino P.D., et al. Protective effects of a topical antioxidant mixture containing vitamin C, ferulic acid, and phloretin against ultraviolet-induced photodamage in human skin // Journal of cosmetic dermatology, 2008. 7(4), 290–297. https://doi.org/10.1111/j.1473-2165.2008.00408.x 44. Ota A., Abramovič H., Abram V., Ulrih N.P. Interactions of p-coumaric, caffeic and ferulic acids and their styrenes with model lipid membranes // Food Chemistry, 2011. 125(4), 1256–1261. https://doi.org/10.1016/J.FOODCHEM.2010.10.054 45. Peng J., Zheng T.T., Liang Y., Duan L.F., Zhang Y. D., Wang L.J., He G.M., Xiao H.T. p-Coumaric Acid Protects Human Lens Epithelial Cells against Oxidative Stress-Induced Apoptosis by MAPK Signaling // Oxidative medicine and cellular longevity, 2018, 8549052. https://doi.org/10.1155/2018/8549052 46. Pichichero E., Cicconi R., Mattei M., Muzi M.G., Canini A. Acacia honey and chrysin reduce proliferation of melanoma cells through alterations in cell cycle progression // International journal of oncology, 2010. 37(4), 973–981. https://doi.org/10.3892/ijo_00000748 47. Pragasam S.J., Venkatesan V., Rasool M. Immunomodulatory and anti-inflammatory effect of p-coumaric acid, a common dietary polyphenol on experimental inflammation in rats // Inflammation, 2013. 36(1), 169–176. https://doi.org/10.1007/s10753-012-9532-8 48. Quattrini M., Liang N., Fortina M.G., Xiang S., Curtis J.M., Gänzle M. Exploiting synergies of sourdough and antifungal organic acids to delay fungal spoilage of bread // International journal of food microbiology, 2019. 302, 8–14. https://doi.org/10.1016/j.ijfoodmicro.2018.09.007 49. Samarghandian S., Farkhondeh T., Samini F. Honey and Health: A Review of Recent Clinical Research // Pharmacognosy research, 2017. 9(2), 121–127. https://doi.org/10.4103/0974-8490.204647 50. Stepankova H., Combarros-Fuertes P., Fresno J.M., Tornadijo M.E., Dias M.S., Pinto C.A., Saraiva J.A., Estevinho L.M. Role of Honey in Advanced Wound Care // Molecules (Basel, Switzerland), 2021. 26(16), 4784. https://doi.org/10.3390/molecules26164784 51. Schwenninger S.M., Lacroix C., Truttmann S., Jans C., Spörndli C., Bigler L., Meile L. Characterization of low-molecular-weight antiyeast metabolites produced by a food-protective Lactobacillus-Propionibacterium coculture // Journal of food protection, 2008. 71(12), 2481–2487. https://doi.org/10.4315/0362-028x-71.12.2481 52. Seok J.K., Kwak J.Y., Seo H.H., Suh H.J., Boo Y.C. Effects of Bambusae Caulis in Taeniam Extract on the UVB-induced Cell Death, Oxidative Stress and Matrix Metalloproteinase 1 Expression in Keratinocytes // Journal of the Society of Cosmetic Scientists of Korea, 2015. 41, 9-20. 53. Shin J.W., Kundu J.K., Surh Y.J. Phloretin inhibits phorbol ester-induced tumor promotion and expression of cyclooxygenase-2 in mouse skin: extracellular signal-regulated kinase and nuclear factor-κB as potential targets. // Journal of medicinal food, 2012. 15(3), 253–257. https://doi.org/10.1089/jmf.2011.1851 54. Sojka M., Valachova I., Bucekova M., Majtan J. Antibiofilm efficacy of honey and bee-derived defensin-1 on multispecies wound biofilm // Journal of medical microbiology, 2016. 65(4), 337–344. https://doi.org/10.1099/jmm.0.000227 55. Stevenson D.E., Hurst R.D. Polyphenolic phytochemicals--just antioxidants or much more? // Cellular and molecular life sciences, 2007. 64(22), 2900–2916. https://doi.org/10.1007/s00018-007-7237-1 56. Van der Meulen R., Scheirlinck I., Van Schoor A., Huys G., Vancanneyt M., Vandamme P., De Vuyst L. Population dynamics and metabolite target analysis of lactic acid bacteria during laboratory fermentations of wheat and spelt sourdoughs // Applied and environmental microbiology, 2007. 73(15), 4741–4750. https://doi.org/10.1128/AEM.00315-07 57. Viana F.R., Carmo L.S. do, Bastos E.M. Antibacterial activity of Aroeira honeys produced in Minas-Gerais against bacteria of clinical importance // Acta Scientiarum. Biological Sciences, 2018. 40(1), e36766. https://doi.org/10.4025/actascibiolsci.v40i1.36766 58. Wang J.P., Lee J.H., Yoo J.S., Cho J.H., Kim H.J., Kim I.H. Effects of phenyllactic acid on growth performance, intestinal microbiota, relative organ weight, blood characteristics, and meat quality of broiler chicks // Poultry Science, 2010. 89(7), 1549–1555. doi:10.3382/ps.2009-00235 10.3382/ps.2009-00235 59. Wang J.P., Yoo J.S., Lee J.H., Zhou T.X., Jang H.D., Kim H.J., Kim I.H. Effects of phenyllactic acid on production performance, egg quality parameters, and blood characteristics in laying hens // The Journal of Applied Poultry Research, 2009. 18(2), 203–209. doi:10.3382/japr.2008-00071 10.3382/JAPR.2008-00071 60. Wang S.P., Lin S.C., Li S., Chao Y.H., Hwang G.Y., Lin C.C. Potent Antiarthritic Properties of Phloretin in Murine Collagen-Induced Arthritis // Evidence-based complementary and alternative medicine: 2016, 9831263. https://doi.org/10.1155/2016/9831263 61. Wu C.H., Ho Y.S., Tsai C.Y., Wang Y.J. et al. In vitro and in vivo study of phloretin-induced apoptosis in human liver cancer cells involving inhibition of type II glucose transporter // International journal of cancer, 2009. 124(9), 2210–2219. https://doi.org/10.1002/ijc.24189 62. Wu C.S., Lin S.C., Li S., Chiang Y.C., Bracci N., Lehman C.W., Tang K.T., Lin C.C. Phloretin alleviates dinitrochlorobenzene-induced dermatitis in BALB/c mice // International journal of immunopathology and pharmacology, 2020. 34, 2058738420929442. https://doi.org/10.1177/2058738420929442 63. Xu J.J., Fu L.J., Si K.L., Yue T.L., Guo C.F. 3-phenyllactic acid production by free-whole-cells of Lactobacillus crustorum in batch and continuous fermentation systems // Journal of applied microbiology, 2020. 129(2), 335–344. https://doi.org/10.1111/jam.14599 64. Yoo J.A., Lim Y.M., Yoon M.H. Production and antifungal effect of 3-phenyllactic acid (PLA) by lactic acid bacteria // Journal of Applied Biological Chemistry. Korean Society for Applied Biological Chemistry. 2016, September 30. https://doi.org/10.3839/jabc.2016.032 65. Zupan A., Mikulic-Petkovsek M., Slatnar A., Stampar F., Veberic R. Individual phenolic response and peroxidase activity in peel of differently sun-exposed apples in the period favorable for sunburn occurrence // Journal of plant physiology, 2014. 171(18), 1706–1712. https://doi.org/10.1016/j.jplph.2014.08.010
Number of Views: 76

Key words:

Bibliography link

Kassym L.T., Kussainova A.A., Adilgozhina S.M., Kozhakhmetova D.K., Zhokebaeva M.S., Zhagiparova Zh.A., Derbisalina G.A. Review of antimicrobial properties of honey chemical constituents - part I // Nauka i Zdravookhranenie [Science & Healthcare]. 2023, (Vol.25) 1, pp. 262-270. doi 10.34689/SH.2023.25.1.030 Касым Л.Т., Кусаинова А.А., Адильгожина С.М., Кожахметова Д.К., Жокебаева М.С., Жагипарова Ж.А., Дербисалина Г.А. Антимикробные свойства химических компонентов меда - часть I. Обзор литературы // Наука и Здравоохранение. 2023. 1(Т.25). С. 262-270. doi 10.34689/SH.2023.25.1.030

Авторизируйтесь для отправки комментариев