THE STATE OF THE HEMOSTASIS SYSTEM AND PREVENTION OF THROMBOEMBOLIC COMPLICATIONS IN PATIENTS WITH ULCERATIVE COLITIS WHO SUFFERED SARS-COV-2 INFECTION DURING THE 2020-2021 PANDEMIC
Relevance: Coronavirus infection MERS-CoV 2, according to current data, causes disorders in the hemostasis system and, thereby, negatively affects the course of a number of other diseases. In the pathogenesis of ulcerative colitis, disorders of hemostasis and local hemocirculation play an important role, which determines the relevance of their assessment after COVID-19 infection. Objective: Comparative analysis of the effect of SARS-CoV-2 infection on the state of the hemostasis system and the risk of thromboembolic complications in ulcerative colitis. Research materials and methods: The study design is a prospective single–center clinical trial. 92 patients with ulcerative colitis who were under outpatient and clinical supervision in the conditions of the Medical Center of the NAO MUS (Semey) in the period 2019-2022 were examined. Of these, 57 cases of laboratory and clinically confirmed SARS-CoV2 disease were identified among persons included in the clinical group during the 2020-2021 pandemic. To study the hemostasis system, the determination of ADP-induced aggregation, fibrinogen content, APTT, RPDF, RFMC, antithrombin III activity, fibrinolysis time were used. Thromboelastography was performed. The frequency of thromboembolic complications was analyzed by the actuarial method. Results of the study: In groups of patients with ulcerative colitis, there was an excess of the vascular-platelet link of the hemostasis system over the control group, as well as dependence on the presence of a history of SARS-CoV2. A significant excess of aggregation indicators and a decrease in disaggregation were determined in patients who underwent SARS–CoV2. According to the IAT level, it was 24.6% (p=0.025), CIAT – 31.1% (p=0.019), CA - 31.3% (p=0.021), Willebrand factor - 65.9% (p=0.007). The degree of decrease in IDT was 21.5% (p=0.034). The time of development of stable thrombosis during thromboelastography was significantly reduced in the subgroup of SARS-CoV2 (36.7%, p=0.018). In contrast to the comparison group, the trend in the frequency of thromboembolic complications in SARS-CoV-2 patients was aimed at increasing.
Gulbarshyn K. Kalimoldina1, https://orcid.org/0000-0002-2750-0617 Zhanna E. Muzdubaeva1, https://orcid.org/0000-0002-9058-1878 Zauresh K. Zhumadilova1, https://orcid.org/0000-0001-6211-6154 Alida Sh. Kaskabaeva1, https://orcid.org/0000-0002-5184-214X Ярослава Б. Ховаева2, https://orcid.org/0000-0003-1186-3867 Daulet K. Muzdybaev1, 1 NJSC "Semey Medical University", Department of Internal Medicine and Rheumatology, Semey, Republic of Kazakhstan; 2 Perm State Medical University named after Academician E.A. Wagner, Perm, Russian Federation.
1. Баркаган З.С., Момот А.П. Диагностика и контролируемая терапия нарушений гемостаза. М.: Ньюдиамед, 2001. – 296 с. 2. Гланц С. Медико-биологическая статистика. McGraw-Hill, 1994; М.: Практика, 1998. — 459 с. 3. Петрова Г.В., Грецова О.В., Старинский В.В. и др. Характеристика и методы расчета статистических показателей, применяемых в онкологии: практическое пособие. – М.: ФГУ МНИОИ им. П.А. Герцена Росздрава, 2005. – 39 с. 4. Ярец Ю.И. Тромбоэластография: основные показатели, интерпретация результатов. – Гомель: ГУ «РНПЦ РМиЭЧ», 2018. - 26 с. 5. Abdulla M., Mohammed N., AlQamish J., Mosli M. Inflammatory bowel disease and COVID-19 outcomes: a meta-analysis. Sci Rep. 2022 Dec 9;12(1):21333. doi: 10.1038/s41598-022-25429-2. 6. Abou-Ismail M.Y., Diamond A., Kapoor S. et al. The hypercoagulable state in COVID-19: incidence, pathophysiology, and management // Thromb Res. Oct 2020; 194: 101–115. 7. Alam M.S., Czajkowsky D.M. SARS-CoV-2 infection and oxidative stress: Pathophysiological insight into thrombosis and therapeutic opportunities // Cytokine Growth Factor Rev. 2022; 63:44-57. doi: 10.1016/j.cytogfr.2021.11.001. 8. Ali M.A., Spinler S.A. COVID-19 and thrombosis: From bench to bedside // Trends Cardiovasc Med. 2021. 31 (3):143-160. doi: 10.1016/j.tcm.2020.12.004. 9. Bieksiene K., Zaveckiene J., Malakauskas K., Vaguliene N., Zemaitis M., Miliauskas S. Post COVID-19 Organizing Pneumonia: The Right Time to Interfere // Medicina (Kaunas). 2021. 57(3):283. doi: 10.3390/medicina57030283. 10. Bilaloglu S., Aphinyanaphongs Y., et al. Thrombosis in hospitalized patients with COVID-19 in a New York City health system // JAMA. 2020. 324(8): 799–801. 11. Bingmer K.E., Ebertz D.P., Violette A.K., Radow B.S., Rushing A.P., Loudon A.M., Moorman M.L. Multi-System Inflammatory Syndrome Presenting as Non-Specific Colitis: A Medical Diagnosis with a Surgical Presentation. Am Surg. 2021. Aug 12:31348211038572. doi: 10.1177/00031348211038572. 12. Briedis K., Aldujeli A., Aldujeili M., et al. Considerations for Management of Acute Coronary Syndromes During the SARS-CoV-2 (COVID-19) Pandemic // Am J Cardiol. 2020. 131:115-119. doi: 10.1016/j.amjcard.2020.06.039. 13. Bouchal S., Alami B. et al.. Cerebral venous thrombosis during relapse of ulcerative colitis: Case report with review of literature // J Med Vasc. 2021. 46(1): 22-27. doi: 10.1016/j.jdmv.2020.12.004. 14. Cheng K., Faye A.S. Venous thromboembolism in inflammatory bowel disease // World J Gastroenterol. 2020; 26(12):1231-1241. doi: 10.3748/wjg.v26.i12.1231. 15. Choudhury A., Sundaram M., Luwang T.T., Singh H., Sharma V. COVID induced mesenteric ischemia in a patient having ulcerative colitis and paroxysmal nocturnal haemoglobinuria in spite of thromboprophylaxis // J R Coll Physicians Edinb. 2023: doi: 10.1177/14782715221148642. 16. Colling M.E. Kanthi Y. COVID-19-associated coagulopathy: an exploration of mechanisms // Vasc Med; 2020. 25(5): 471–478. 17. Crook S.M., Quinton R.A. Cerebral Vascular Thrombosis Associated With Ulcerative Colitis and Primary Sclerosing Cholangitis // Am J Forensic Med Pathol. 2021; 42(1):81-84. doi: 10.1097/PAF.0000000000000592. 18. Gómez-Mesa J.E., Galindo-Coral S., Montes M.C., Muñoz Martin A.J. Thrombosis and Coagulopathy in COVID-19 // Curr Probl Cardiol. 2021. 46(3):100742. doi: 10.1016/j.cpcardiol.2020.100742. 19. González-Calle D., Eiros R., Sánchez P.L. The heart and SARS-CoV-2. Med Clin (Barc). 2022. 159(9):440-446. doi: 10.1016/j.medcli.2022.07.002. 20. Helms J., Tacquard C., Severac F. et al. High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study // Intensive Care Med. 2020. 46(6): 1089–1098. 21. Hopkins C., Alanin M., Philpott C., Harries P., Whitcroft K., Qureishi A., Anari S., et al. Management of new onset loss of sense of smell during the COVID-19 pandemic - BRS Consensus Guidelines // Clin Otolaryngol. 2021. 46(1):16-22. doi: 10.1111/coa.13636. 22. Krylov A.A., Kozlovich I.V., Stolov S.V. The extraintestinal manifestations of nonspecific ulcerative colitis. Ter Arkh. 1993; 65(2): 80-2. 23. Mei Z.W., van Wijk X.M., Pham H.P. et al. Role of von willebrand factor in COVID-19 associated coagulopathy // J Appl Lab Med. 2021. 6(5): 1305–1315. 24. Purohit D., Ahirwar A.K., Sakarde A., Asia P., Gopal N. COVID-19 and lung pathologies // Horm Mol Biol Clin Investig. 2021. 42(4):435-443. doi: 10.1515/hmbci-2020-0096. 25. Ragos V., Adamopoulou M., Manoli A., Katsinis S., Papouliakos S., Dimas O., Tsiambas E., et al. Impact of SARS-CoV-2 infection on oral carcinoma patients // J BUON. 2021; 26(5):1719-1722. 26. Scherer P.E., Kirwan J.P., Rosen C.J. Post-acute sequelae of COVID-19: A metabolic perspective // Elife. 2022;11:e78200. doi: 10.7554/eLife.78200. 27. Snell J. SARS-CoV-2 infection and its association with thrombosis and ischemic stroke: a review // Am J Emerg Med. 2021; 40:188-192. doi: 10.1016/j.ajem.2020.09.072. 28. Stark K., Massberg S. Interplay between inflammation and thrombosis in cardiovascular pathology // Nat Rev Cardiol. 2021. 18(9):666-682. doi: 10.1038/s41569-021-00552-1. 29. Tajbakhsh A., Gheibi Hayat S.M., Taghizadeh H. et al. COVID-19 and cardiac injury: clinical manifestations, biomarkers, mechanisms, diagnosis, treatment, and follow up // Expert Rev Anti Infect Ther. 2021; 19(3):345-357. doi: 10.1080/14787210.2020.1822737. 30. Tan B.K., Mainbourg S., Friggeri A. et al. Arterial and venous thromboembolism in COVID-19: a study-level meta-analysis // Thorax. 2021. 76(10): 970–979. 31. Zdanyte M., Rath D., Gawaz M., Geisler T. Venous Thrombosis and SARS-CoV-2 // Hamostaseologie. 2022. 42(4):240-247. doi: 10.1055/a-1661-0283.. References: 1. Barkagan Z.S., Momot A.P. Diagnostika i kontroliruemaya terapiya narushenii gemostaza [Diagnosis and controlled therapy of hemostasis disorders]. M.: Newdiamed, 2001. - 296 p. [in Russian] 2. Glantz S. Mediko-biologicheskaya statistika [Medico-biological statistics]. McGraw-Hill, 1994; M.: Practice, 1998. - 459 p. [in Russian] 3. Petrova G.V. Gretsova O.V., Starinsky V.V. Kharakteristika i metody rascheta statisticheskikh pokazatelei primenyaemykh v onkologii: prakticheskoe posobie [Characteristics and methods for calculating statistical indicators used in oncology: a practical guide]. – M.: FGU MNIOI im. P.A. Herzen Roszdrav, 2005. - 39 p. [in Russian] 4. Yarets Yu.I. Tromboelastografiya: osnovnye pokazateli, interpretatsiya rezul'tatov [Thromboelastography: main indicators, interpretation of results]. - Gomel: GU "RSPC RMiEC", 2018. - 26 p. [in Russian]
Number of Views: 96

Key words:

Category of articles: COVID-19 - Topical Subject

Bibliography link

Kalimoldina G.K., Muzdubaeva Zh.E., Zhumadilova Z.K., Kaskabaeva A.Sh., Khovaeva Ya.B., Muzdybaev D.K. The state of the hemostasis system and prevention of thromboembolic complications in patients with ulcerative colitis who suffered SARS-CoV-2 infection during the 2020-2021 pandemic // Nauka i Zdravookhranenie [Science & Healthcare]. 2023, (Vol.25) 2, pp. 16-22. doi 10.34689/SH.2023.25.2.002

Авторизируйтесь для отправки комментариев