Online ISSN: 3007-0244,
Print ISSN:  2410-4280
REVIEW OF ANTIMICROBIAL PROPERTIES OF HONEY CHEMICAL CONSTITUENTS - PART II
Introduction. Honey and its elements have a notable role in treating wounds and different skin infections due to their antibacterial properties. However, an examination of the phytochemicals in honey and how they contribute to its antimicrobial effectiveness and mode of operation has been carried out. Objective. The aim of this present review is to outline the existing information on the antibacterial characteristics of specific phytochemicals discovered in honey. Materials and methods. To find sources for this research, several databases such as Pubmed, ResearchGate, Cyberleninka, and eLibrary were explored. The criteria for inclusion were human and animal research, primary studies (including descriptive and analytical studies, clinical trials), secondary studies (systematic reviews and meta-analyses), instructional manuals, clinical guidelines and protocols, and full-text publications in both Russian and English. Results and Conclusion. Many studies have aimed to determine the effectiveness of various components found in honey against both Gram-positive and Gram-negative microorganisms. Honey has become a popular antibacterial agent due to the growing concern of antimicrobial resistance. For example, some E. coli bacteria have developed resistance to certain types of antimicrobial drugs, such as third-generation cephalosporins, fluoroquinolones, and aminoglycosides. Therefore, investigating the antibacterial properties of the chemical components found in honey may be useful in addressing the issue of antimicrobial resistance.
Laura T. Kassym1*, https://orcid.org/0000-0003-4448-6455 Assiya A. Kussainova2, https://orcid.org/0000-0002-5738-0804 Saltanat M. Adilgozhina2, Dana K. Kozhakhmetova2, https://orcid.org/0000-0002-8367-1461 Madiana S. Zhokebaeva2, Zhanar A. Zhagiparova3, https://orcid.org/0000-0002-5619-3505 Gulmira A. Derbisalina1, https://orcid.org/0000-0003-3704-5061 Nadira B. Akhtanova2, 1 NJSC "Astana Medical University", Astana, Republic of Kazakhstan; 2 NJSC "Semey Medical University", Semey, Republic of Kazakhstan; 3 Al-Farabi Kazakh National University Higher School of Public Health, Almaty, Republic of Kazakhstan.
1. Antibiotic Resistance Threat in the United States, 2013 https://www.the-hospitalist.org/hospitalist/article/122761/antimicrobial-resistant-infections/antibiotic-resistance-threats-united (accessed: 02.01.2023) 2. Antimicrobial resistance, WHO 2021 https://www.who.int/publications/i/item/9789240027336 (accessed: 02.01.2023) 3. Antibiotic Resistance Threat in the United States, 2019 https://www.cdc.gov/drugresistance/biggest-threats.html (accessed: 02.01.2023) 4. Abd-El Aal A.M., El-Hadidy M.R., El-Mashad N.B., El-Sebaie A.H. Antimicrobial effect of bee honey in comparison to antibiotics on organisms isolated from infected burns // Ann Burns Fire Disasters, 2007. 20(2):83-8. PMID: 21991075; PMCID: PMC3188067. 5. Akujobi C.O., Njoku H.O. Bioassay for Determination of Microbial Sensitivity to Nigerian Honey // Global Journal of Pharmacology. 2010. 4(1), 36-40. 6. Allocati N., Masulli M., Alexeyev M.F. Di Ilio C. Escherichia coli in Europe: an overview // International journal of environmental research and public health. 2010. 10(12), 6235–6254. https://doi.org/10.3390/ijerph10126235 (accessed: 02.01.2023) 7. Alvarez-Suarez J.M., Giampieri F., Cordero M., Gasparrini M., Forbes-Hernández T.Y., Mazzoni L. et al. Activation of AMPK/Nrf2 Signalling by Manuka Honey Protects Human Dermal Fibroblasts against Oxidative Damage by Improving Antioxidant Response and Mitochondrial Function Promoting Wound Healing // J. Funct. Foods. 2013. 25, 38–49. doi:10.1016/j.jff.2016.05.008 8. Alvarez-Suarez J.M., Giampieri F., Cordero M., Gasparrini M., Forbes-Hernández T.Y., Mazzoni L., Battino M. Activation of AMPK/Nrf2 signalling by Manuka honey protects human dermal fibroblasts against oxidative damage by improving antioxidant response and mitochondrial function promoting wound healing // Journal of Functional Foods. 2016. 25, 38–49. doi:10.1016/j.jff.2016.05.008 9. Al-Waili N.S., Al-Waili F.S., Akmal M., Ali A., Salom K.Y., Al Ghamdi A.A. Effects of natural honey on polymicrobial culture of various human pathogens // Archives of medical science: AMS. 2014. 10(2), 246–250. https://doi.org/10.5114/aoms.2012.28603 10. Brudzynski K. Effect of hydrogen peroxide on antibacterial activities of Canadian honeys // Canadian journal of microbiology. 2006. 52(12), 1228–1237. https://doi.org/10.1139/w06-086 11. Campeau M.E.M., Patel R. Antibiofilm Activity of Manuka Honey in Combination with Antibiotics // International Journal of Bacteriology. 2014. 1–7. doi:10.1155/2014/795281 12. Carter D.A., Blair S.E., Cokcetin N.N., Bouzo D., Brooks P., Schothauer R., Harry E.J. Therapeutic Manuka Honey: No Longer So Alternative // Frontiers in microbiology. 2016. 7, 569. https://doi.org/10.3389/fmicb.2016.00569 (accessed: 08.01.2023) 13. Chau T.C., Owusu-Apenten R., Nigam P. Total Phenols, Antioxidant Capacity and Antibacterial Activity of Manuka Honey Extract // Journal of Advances in Biology and Biotechnology. 2011. 15(4). https://doi.org/10.9734/JABB/2017/37101 (accessed: 05.01.2023) 14. Chauhan A., Pandey V., Chacko K.M., Khandal R.K. Antibacterial activity of raw and processed honey // Electronic Journal of Biology. 2010. 5 (3), 58–66. 15. Cooper R.A., Halas E., Molan P.C. The efficacy of honey in inhibiting strains of Pseudomonas aeruginosa from infected burns // The Journal of burn care & rehabilitation. 2002. 23(6), 366–370. https://doi.org/10.1097/00004630-200211000-00002 (accessed: 05.01.2023) 16. Ferri M., Ranucci E., Romagnoli P., & Giaccone V. Antimicrobial resistance: A global emerging threat to public health systems // Critical reviews in food science and nutrition. 2017. 57(13), 2857–2876. https://doi.org/10.1080/10408398.2015.1077192 (accessed: 02.01.2023) 17. George N.M., Cutting K.F. Antibacterial Honey (Medihoney™): in-vitro Activity Against Clinical Isolates of MRSA, VRE, and Other Multiresistant Gram-negative Organisms Including Pseudomonas aeruginosa // Wounds: a compendium of clinical research and practice. 2007. 19(9), 231–236. 18. Hammond E.N., Duster M., Musuuza J.S., Safdar N. Effect of United States buckwheat honey on antibiotic-resistant hospital acquired pathogens // The Pan African medical journal. 2016. 25, 212. https://doi.org/10.11604/pamj.2016.25.212.10414 (accessed: 05.01.2023) 19. Hayes G., Wright N., Gardner S.L., Telzrow C.L., Wommack A.J., Vigueira P.A. Manuka honey and methylglyoxal increase the sensitivity of Staphylococcus aureus to linezolid // Lett Appl Microbiol. 2018. 66(6):491-495. doi: 10.1111/lam.12880. 20. Jenkins R.E., Cooper R. Synergy between oxacillin and manuka honey sensitizes methicillin-resistant Staphylococcus aureus to oxacillin // The Journal of antimicrobial chemotherapy. 2012. 67(6), 1405–1407. https://doi.org/10.1093/jac/dks071 (accessed: 11.01.2023) 21. Jenkins R., Cooper R. Improving antibiotic activity against wound pathogens with manuka honey in vitro // PloS one. 2012. 7(9), e45600. https://doi.org/10.1371/journal.pone.0045600 (accessed: 13.01.2023) 22. Jenkins R., Burton N., Cooper R. Effect of manuka honey on the expression of universal stress protein A in meticillin-resistant Staphylococcus aureus // International journal of antimicrobial agents. 2011. 37(4), 373–376. https://doi.org/10.1016/j.ijantimicag.2010.11.036 (accessed: 11.01.2023) 23. Jull A.B., Cullum N., Dumville J.C., Westby M.J., Deshpande S., Walker N. Honey as a topical treatment for wounds // The Cochrane database of systematic reviews. 2015. (3), CD005083. https://doi.org/10.1002/14651858.CD005083.pub4 (accessed: 08.01.2023) 24. Karayil S., Deshpande S.D., & Koppikar G.V. Effect of honey on multidrug resistant organisms and its synergistic action with three common antibiotics // Journal of postgraduate medicine. 1988. 44(4), 93–96. 25. Kumar N.D., Kalluru R.S., Ahmed S., Abhilashini A., Jayaprakash T., Garlapati R., Sowmya B., Reddy K.N. Comparison of the Antibacterial Efficacy of Manuka Honey Against E. faecalis and E. coli - An In vitro Study // Journal of clinical and diagnostic research: JCDR. 2014. 8(8), ZC29–ZC31. https://doi.org/10.7860/JCDR/2014/9676.4738 (accessed: 15.01.2023) 26. Lee J.H., Park J.H., Kim J.A., Neupane G.P., Cho M.H., Lee C.S., Lee J. Low concentrations of honey reduce biofilm formation, quorum sensing, and virulence in Escherichia coli O157:H7 // Biofouling. 2011. 27(10), 1095–1104. https://doi.org/10.1080/08927014.2011.633704 (accessed: 15.01.2023) 27. Liu M.Y., Cokcetin N.N., Lu J., Turnbull L., Carter D. A., Whitchurch C.B., Harry E.J. Rifampicin-Manuka Honey Combinations Are Superior to Other Antibiotic-Manuka Honey Combinations in Eradicating Staphylococcus aureus Biofilms // Frontiers in microbiology. 2018. 8, 2653. https://doi.org/10.3389/fmicb.2017.02653 (accessed: 15.01.2023) 28. Liu M., Lu J., Müller P., Turnbull L., Burke C.M., Schlothauer R.C., Carter D.A., Whitchurch C.B., Harry E.J. Antibiotic-specific differences in the response of Staphylococcus aureus to treatment with antimicrobials combined with manuka honey // Frontiers in microbiology. 2015. 5, 779. https://doi.org/10.3389/fmicb.2014.00779 (accessed: 13.01.2023) 29. Lu J., Carter D.A., Turnbull L., Rosendale D., Hedderley D., Stephens J., Gannabathula S., Steinhorn G., Schlothauer R.C., Whitchurch C.B., Harry E.J. The effect of New Zealand kanuka, manuka and clover honeys on bacterial growth dynamics and cellular morphology varies according to the species // PloS one. 2013. 8(2), e55898. https://doi.org/10.1371/journal.pone.0055898 (accessed: 06.01.2023) 30. Lu J., Turnbull L., Burke C.M., Liu M., Carter D.A., Schlothauer R.C., Whitchurch C.B., Harry E.J. Manuka-type honeys can eradicate biofilms produced by Staphylococcus aureus strains with different biofilm-forming abilities // PeerJ. 2014. 2, e326. https://doi.org/10.7717/peerj.326 (accessed: 06.01.2023) 31. Lusby P.E., Coombes A.L., Wilkinson J.M. Bactericidal activity of different honeys against pathogenic bacteria // Archives of medical research. 2005. 36(5), 464–467. https://doi.org/10.1016/j.arcmed.2005.03.038 (accessed: 06.01.2023) 32. Maddocks S.E., Jenkins R.E. Honey: a sweet solution to the growing problem of antimicrobial resistance? // Future microbiology. 2013. 8(11), 1419–1429. https://doi.org/10.2217/fmb.13.105 (accessed: 13.01.2023) 33. Majtan J. Honey: an immunomodulator in wound healing. Wound repair and regeneration: official publication of the Wound Healing Society [and] the European Tissue Repair Society. 2014. 22(2), 187–192. https://doi.org/10.1111/wrr.12117 (accessed: 13.01.2023) 34. Mandel H.H., Sutton G.A., Abu E., Kelmer G. Intralesional application of medical grade honey improves healing of surgically treated lacerations in horses // Equine veterinary journal. 2020. 52(1), 41–45. https://doi.org/10.1111/evj.13111 (accessed: 13.01.2023) 35. Mason A.D., Jr McManus A.T., Pruitt B.A. Jr. Association of burn mortality and bacteremia. A 25-year review // Archives of surgery (Chicago, Ill.: 1960). 1986. 121(9), 1027–1031. https://doi.org/10.1001/archsurg.1986.01400090057009 (accessed: 03.01.2023) 36. Mat Lazim N., Abdullah B., Salim R. The effect of Tualang honey in enhancing post tonsillectomy healing process. An open labelled prospective clinical trial // International journal of pediatric otorhinolaryngology. 2013. 77(4), 457–461. https://doi.org/10.1016/j.ijporl.2012.11.036 (accessed: 15.01.2023) 37. Mavric E., Wittmann S., Barth G., Henle T. Identification and quantification of methylglyoxal as the dominant antibacterial constituent of Manuka (Leptospermum scoparium) honeys from New Zealand // Molecular nutrition & food research. 2008. 52(4), 483–489. https://doi.org/10.1002/mnfr.200700282 (accessed: 15.01.2023) 38. McLoone P., Tabys D., Fyfe L. Honey Combination Therapies for Skin and Wound Infections: A Systematic Review of the Literature // Clinical, cosmetic and investigational dermatology. 2020. 13, 875–888. https://doi.org/10.2147/CCID.S282143 (accessed: 11.01.2023) 39. Merckoll P., Jonassen T.Ø., Vad M.E., Jeansson S.L., Melby K.K. Bacteria, biofilm and honey: a study of the effects of honey on 'planktonic' and biofilm-embedded chronic wound bacteria // Scandinavian journal of infectious diseases. 2009. 41(5), 341–347. https://doi.org/10.1080/00365540902849383 (accessed: 13.01.2023) 40. Müller P., Alber D.G., Turnbull L., Schlothauer R.C., Carter D.A., Whitchurch C.B., Harry E.J. Synergism between Medihoney and rifampicin against methicillin-resistant Staphylococcus aureus (MRSA) // PloS one. 2013. 8(2), e57679. https://doi.org/10.1371/journal.pone.0057679 (accessed: 13.01.2023) 41. Nair H., Tatavilis N., Pospíšilová I., Kučerová J., Cremers N. Medical-Grade Honey Kills Antibiotic-Resistant Bacteria and Prevents Amputation in Diabetics with Infected Ulcers: A Prospective Case Series // Antibiotics (Basel, Switzerland). 2020 9(9), 529. https://doi.org/10.3390/antibiotics9090529 (accessed: 15.01.2023) 42. O’Meara S.M., Cullum N.A., Majid M. et al. Systematic reviews of wound care management: (3) antimicrobial agents for chronic wounds; (4) diabetic foot ulceration // Health Technology Assessment 4. 2000. 1–237. 43. Oliveira A., Ribeiro H.G., Silva A.C., Silva M.D., Sousa J.C., Rodrigues C.F., Sillankorva S. Synergistic Antimicrobial Interaction between Honey and Phage against Escherichia coli Biofilms // Frontiers in Microbiology. 2017. 8. doi:10.3389/fmicb.2017.02407 44. Paitan Y. Current Trends in Antimicrobial Resistance of Escherichia coli // Current Topics in Microbiology and Immunology. 2018. doi:10.1007/82_2018_110 45. Paramasivan S., Drilling A.J., Jardeleza C., Jervis-Bardy J., Vreugde S., Wormald P.J. Methylglyoxal-augmented manuka honey as a topical anti-Staphylococcus aureus biofilm agent: safety and efficacy in an in vivo model // International forum of allergy & rhinology. 2014. 4(3), 187–195. https://doi.org/10.1002/alr.21264 (accessed: 08.01.2023) 46. Rabie E., Serem J.C., Oberholzer H.M., Gaspar A.R., Bester M.J. How methylglyoxal kills bacteria: An ultrastructural study // Ultrastructural pathology. 2016. 40(2), 107–111. https://doi.org/10.3109/01913123.2016.1154914 (accessed: 15.01.2023) 47. Scepankova H., Combarros-Fuertes P., Fresno J. M., Tornadijo M.E., Dias M.S., Pinto C.A., Saraiva J.A., Estevinho L.M. Role of Honey in Advanced Wound Care // Molecules (Basel, Switzerland). 2021. 26(16), 4784. https://doi.org/10.3390/molecules26164784 (accessed: 03.01.2023) 48. Stephens J.M., Schlothauer R.C., Morris B.D., Yang D., Fearnley L., Greenwood D.R., Loomes K.M. Phenolic compounds and methylglyoxal in some New Zealand manuka and kanuka honeys // Food Chemistry. 2010. 120(1), 78–86. doi:10.1016/j.foodchem.2009.09.074 49. Taneja N., Kaur H. Insights into Newer Antimicrobial Agents Against Gram-negative Bacteria // Microbiology insights. 2016. 9, 9–19. https://doi.org/10.4137/MBI.S29459 (accessed: 13.01.2023)
Number of Views: 105

Key words:

Category of articles: Reviews

Bibliography link

Kassym L.T., Kussainova A.A., Adilgozhina S.M., Kozhakhmetova D.K., Zhokebaeva M.S., Zhagiparova Zh.A., Derbisalina G.A., Akhtanova N.B. Review of antimicrobial properties of honey chemical constituents - Part II // Nauka i Zdravookhranenie [Science & Healthcare]. 2023, (Vol.25) 2, pp. 244-251. doi 10.34689/SH.2023.25.2.031

Авторизируйтесь для отправки комментариев