Online ISSN: 3007-0244,
Print ISSN:  2410-4280
Introduction. Thyroid cancer is one of the most common endocrine malignancies. Radioactive iodine I131 is the baseline drug in the therapy of patients with differentiated thyroid cancer (DTC); however, 5% to 15% of DTC and 50% of metastatic DTC are not amenable to radioactive iodine I131 therapy. Some patients suffer from recurrent disease after complex treatment. Recurrent disease is often resistant to radioiodine and shows a poor response to radioactive iodine therapy. The aim. To analyze the publications devoted to the problems of radioiodine-resistant thyroid cancer and their clinicopathological and molecular-genetic characteristics. Search strategy. The literature search was performed in the electronic databases Web of Science Core Collection, Scopus, Google Scholar over the past 5 years: from 2018 to 2023. Inclusion criteria were systematic reviews, original articles. Exclusion criteria were articles of poor methodological quality, duplication, missing or incomplete data in articles, case reports, letters, editorials, and expert opinions. 135 articles were found, of which 88 were selected for analysis. Results of the research. According to the material studied, special attention is now paid to the presence of driver mutations, such as telomerase reverse transcriptase promoter mutations TERT, BRAF V600E, NRAS, which show an aggressive genetic pattern; they can also be used for patient risk stratification when determining radioiodine resistance in patients. In addition, histological examination of the tumor is also one of the most important predictors of DTC prognosis. Conclusion. Based on the analysis of publications, we can conclude that significant progress has been made over the past decades in understanding the molecular mechanisms that cause the malignant evolution of DTC and the development of radioiodine resistance. Given the relationship between molecular and histological heterogeneity, the selection of tumor samples for molecular genetic analysis should be based on the results of histological evaluation of the entire tumor. Comprehensive molecular genetic analysis, as well as histological characteristics of the tumor, will subsequently play an important role in stratifying patients and determining further patient management tactics.
Aidana M. Rakhmankulova1, Laura A. Pak1, Lyudmila M. Pivina1, Sayat Z. Tanatarov2, Bayan Zh. Atantayeva2, Madina A. Mussulmanova1, Saltanat O. Bolsynbekova3, Nailya A. Kabildina4, Arailym B. Baurzhan2, 1 NCJSC "Semey Medical University," Semey, the Republic of Kazakhstan; 2 Nuclear Medicine and Oncology Center, Semey, the Republic of Kazakhstan; 3 National Scientific Oncological Center, Astana, the Republic of Kazakhstan; 4 NCJSC "Karaganda Medical University," Karaganda, the Republic of Kazakhstan.
1. Абдрашитова А.Т., Панова Т.Н., Дьякова О.Н., Джуваляков С.Г., Теплый Д.Л. Подходы к ранней диагностике рака щитовидной железы // Кубанский научный медицинский вестник. 2018. 25(3):139–148. 2. Амиров Э.В., Федоров В.Э., Захохов Р.М. Результаты хирургического лечения узловых образований щитовидной железы у женщин репродуктивного возраста // Медицинский альманах. 2013. №6 (30). С. 184-186. 3. Бельцевич Д.Г., Мудунов А.М., Ванушко В.Э., Румянцев П.О., Мельниченко Г.А., Кузнецов Н.С., Подвязников С.О., Алымов Ю.В. и др. Дифференцированный рак щитовидной железы // Современная онкология. 2020. Т. 22. №4. C. 30-44. doi:10.26442/18151434.2020.4.200507 4. Бородавина Е. В. и др. Исторические аспекты и современные концепции в лечении больных дифференцированным раком щитовидной железы, рефрактерным к терапии радиоактивным йодом // Опухоли головы и шеи. 2021. Т. 11. №. 4. С. 119-130. 5. Гарипов К. А., Афанасьева З. А., Гафиуллина А. Д. Роль апоптоза в формировании радиойодрезистентности при дифференцированном раке щитовидной железы //Вестник Авиценны. – 2020. – Т. 22. – №. 2. – С. 301-310. 6. Денисенко Н.П. и др. Генетические маркеры, ассоциированные с резистентностью к радиойодтерапии, у больных раком щитовидной железы // Современная онкология. 2022. Т. 24. №.3. С. 345-350. 7. Понкина О.Н. Классификация опухолей щитовидной железы (ВОЗ, 2017): Акцент на прогноз // Инновационная медицина Кубани. 2017. Т. 8. №.4. С. 53-59. 8. Ромащенко П.Н. и др. Молекулярно-генетические исследования в хирургии щитовидной железы // Таврический медико-биологический вестник. 2021. Т. 24. №. 2. С. 118-126. 9. Румянцев П.О. и др. Мутация BRAFV600E при папиллярном раке щитовидной железы. Клинические и методологические аспекты // Вопросы онкологии. 2019. Т. 65. №. 1. С. 16-26. 10. Шуринов А.Ю., Крылов В.В., Бородавина Е.В. Радиойодаблация при раке щитовидной железы. Исторические и современные аспекты. Обзор литературы // Онкологический журнал: лучевая диагностика, лучевая терапия. 2021. Т. 4. №. 4. С.9-19. 11. Шуринов А. Ю., Бородавина Е.В. Динамический контроль после радиойодабляции при дифференци-рованном раке щитовидной железы: взгляд радиолога // Опухоли головы и шеи. 2023. Т. 13. №. 1. С. 91-101. 12. Aashiq M., Silverman D.A., Na'ara S., Takahashi H., Amit M. Radioiodine-Refractory Thyroid Cancer: Molecular Basis of Redifferentiation Therapies, Management, and Novel Therapies. Cancers (Basel). 2019 Sep 17. 11(9):1382. doi: 10.3390/cancers11091382. PMID: 31533238. PMCID: PMC6770909. 13. Ahuja S., Avram A.M., Dillehay G., Greenspan B.S., Gulec S., Van Nostrand D. The Martinique Principles. J Nucl Med. 2019 Sep. 60(9):1334-1335. doi: 10.2967/jnumed.119.232066. Epub 2019 Jun 21. PMID: 31227575. 14. Bai Y., Kakudo K., Jung C.K. Updates in the Pathologic Classification of Thyroid Neoplasms: A Review of the World Health Organization Classification. Endocrinol Metab. 2020. 35(4):696-715. 15. Chandekar KR, Satapathy S, Bal C. Impact of radioiodine therapy on recurrence and survival outcomes in intermediate-risk papillary thyroid carcinoma -A systematic review and meta-analysis. Clin Endocrinol (Oxf). 2024 Feb;100(2):181-191. doi: 10.1111/cen.15001. Epub 2023 Dec 4. PMID: 38050454. 16. Mete O. Special Issue On the 2022 WHO Classification of Endocrine and Neuroendocrine Tumors: a New Primer for Endocrine Pathology Practice // Endocr Pathol. 2022 Mar. 33(1):1-2. doi: 10.1007/s12022-022-09712-6. PMID: 35246804; PMCID: PMC8896415. 17. Baloch Z.W., Asa S.L., Barletta J.A., Ghossein R.A., Juhlin C.C., Jung C.K., LiVolsi V.A., Papotti M.G., Sobrinho-Simões M., Tallini G., Mete O. Overview of the 2022 WHO Classification of Thyroid Neoplasms. Endocr Pathol. 2022 Mar. 33(1):27-63. doi: 10.1007/s12022-022-09707-3. Epub 2022 Mar 14. PMID: 35288841. 18. Bergers G., Hanahan D. Modes of resistance to anti-angiogenic therapy. Nature Reviews Cancer. 2008. Т. 8. №. 8. С. 592-603. 19. Buffet C., Wassermann J., Hecht F., Leenhardt L., Dupuy C., Groussin L., Lussey-Lepoutre C. Redifferentiation of radioiodine-refractory thyroid cancers. Endocr Relat Cancer. 2020 May. 27(5):R113-R132. doi: 10.1530/ERC-19-0491. PMID: 32191916. 20. Capdevila J., Galofré J.C., Grande E., Zafón Llopis C., Ramón Y., Cajal Asensio T., Navarro González E., Jiménez-Fonseca P., Santamaría Sandi J., Gómez Sáez J.M., Riesco Eizaguirre G. Consensus on the management of advanced radioactive iodine-refractory differentiated thyroid cancer on behalf of the Spanish Society of Endocrinology Thyroid Cancer Working Group (GTSEEN) and Spanish Rare Cancer Working Group (GETHI). Clin Transl Oncol. 2017 Mar;19(3):279-287. doi: 10.1007/s12094-016-1554-5. Epub 2016 Oct 4. PMID: 27704399. 21. Chen L., Luo Q., Shen Y., Yu Y., Yuan Z., Lu H., Zhu R. Incremental value of 131I SPECT/CT in the management of patients with differentiated thyroid carcinoma. J Nucl Med. 2008 Dec;49(12):1952-7. doi: 10.2967/jnumed.108.052399. Epub 2008 Nov 7. PMID: 18997044. 22. Chung J.H. BRAF and TERT promoter mutations: clinical application in thyroid cancer. Endocr J. 2020 Jun 29;67(6):577-584. doi: 10.1507/endocrj.EJ20-0063. Epub 2020 Apr 21. PMID: 32321884. 23. Cook F.A., Cook S.J. Inhibition of RAF dimers: it takes two to tango. Biochem Soc Trans. 2021 Feb 26;49(1):237-251. doi: 10.1042/BST20200485. PMID: 33367512; PMCID: PMC7924995. 24. Deandreis D., Rubino C., Tala H., Leboulleux S., Terroir M., Baudin E., Larson S., Fagin J.A., Schlumberger M., Tuttle R.M. Comparison of Empiric Versus Whole-Body/-Blood Clearance Dosimetry-Based Approach to Radioactive Iodine Treatment in Patients with Metastases from Differentiated Thyroid Cancer. J Nucl Med. 2017 May;58(5):717-722. doi: 10.2967/jnumed.116.179606. Epub 2016 Oct 13. PMID: 27738010. 25. Eftychia G.K., Roupas N.D., Markou K.B. Effect of excess iodine intake on thyroid on human health //Minerva Med. 2017. Т.108. №.2. С. 136-146. 26. Eszlinger M., Khalil M., Gillmor A.H., Huang H., Stewardson P., McIntyre J.B., Morrissy S., Paschke R. Histology-based molecular profiling improves mutation detection for advanced thyroid cancer. Genes Chromosomes Cancer. 2021 Aug;60(8):531-545. doi: 10.1002/gcc.22949. Epub 2021 Mar 31. PMID: 33749950. 27. Fagin J.A., Wells S.A. Jr. Biologic and Clinical Perspectives on Thyroid Cancer. N Engl J Med. 2016 Sep 15;375(11):1054-67. doi: 10.1056/NEJMra1501993. PMID: 27626519; PMCID: PMC5512163. 28. Ferlay J., Colombet M., Soerjomataram I., Mathers C., Parkin D.M., Piñeros M., Znaor A., Bray F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer. 2019 Apr 15;144(8):1941-1953. doi: 10.1002/ijc.31937. Epub 2018 Dec 6. PMID: 30350310. 29. Filetti S., Durante C., Hartl D., Leboulleux S., Locati L.D., Newbold K., Papotti M.G., Berruti A. ESMO Guidelines Committee. Electronic address: Thyroid cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up†. Ann Oncol. 2019 Dec 1;30(12):1856-1883. doi: 10.1093/annonc/mdz400. PMID: 31549998. 30. Forbes S.A., Beare D., Gunasekaran P., Leung K., Bindal N., Boutselakis H., Ding M., Bamford S., et al. COSMIC: exploring the world's knowledge of somatic mutations in human cancer. Nucleic Acids Res. 2015 Jan;43 (Database issue): D805-11. doi: 10.1093/nar/gku1075. Epub 2014 Oct 29. PMID: 25355519; PMCID: PMC4383913. 31. Fukuda N., Takahashi S. Clinical Indications for Treatment with Multi-Kinase Inhibitors in Patients with Radioiodine-Refractory Differentiated Thyroid Cancer. Cancers (Basel). 2021 May 10;13(9):2279PMID: 34068664; PMCID: PMC8126102 32. Gruber J.J., Colevas A.D. Differentiated thyroid cancer: focus on emerging treatments for radioactive iodine-refractory patients. Oncologist. 2015 Feb;20(2):113-26. doi: 10.1634/theoncologist.2014-0313. Epub 2015 Jan 23. PMID: 25616432; PMCID: PMC4319630. 33. Gulec S.A., Ahuja S., Avram A.M., Bernet V.J., Bourguet P., Draganescu C., Elisei R., Giovanella L. et al. A Joint Statement from the American Thyroid Association, the European Association of Nuclear Medicine, the European Thyroid Association, the Society of Nuclear Medicine and Molecular Imaging on Current Diagnostic and Theranostic Approaches in the Management of Thyroid Cancer. Thyroid. 2021 Jul;31(7):1009-1019. doi: 10.1089/thy.2020.0826. Epub 2021 Jun 23. PMID: 33789450. 34. Haddad R.I., Bischoff L., Ball D., Bernet V., Blomain E., Busaidy N.L., Campbell M., Dickson P. et al. Thyroid Carcinoma, Version 2.2022, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2022 Aug;20(8):925-951. doi: 10.6004/jnccn.2022.0040. PMID: 35948029. 35. Hamidi S., Hofmann M.C., Iyer P.C., Cabanillas M.E., Hu M.I., Busaidy N.L., Dadu R. Review article: new treatments for advanced differentiated thyroid cancers and potential mechanisms of drug resistance. Front Endocrinol (Lausanne). 2023 Jun 26;14:1176731. doi: 10.3389/fendo.2023.1176731. PMID: 37435488; PMCID: PMC10331470. 36. Huang M., Yan C., Xiao J., Wang T., Ling R. Relevance and clinicopathologic relationship of BRAF V600E, TERT and NRAS mutations for papillary thyroid carcinoma patients in Northwest China. Diagn Pathol. 2019 Jul 12;14(1):74. doi: 10.1186/s13000-019-0849-6. PMID: 31300059; PMCID: PMC6626378. 37. Huize Shen, Rui Zhu, Yanyang Liu, Yangjian Hong, Jiaming Ge, Jie Xuan, Wenyuan Niu, Xuefei Yu, Jiang-Jiang Qin, Qinglin Li. Radioiodine-refractory differentiated thyroid cancer: Molecular mechanisms and therapeutic strategies for radioiodine resistance. 2023. 22 october; 72: 101013. doi: 10.1016 / j.drup.2023.101013. 38. Jung C.K., Bychkov A., Kakudo K. Update from the 2022 World Health Organization Classification of Thyroid Tumors: A Standardized Diagnostic Approach. Endocrinol Metab (Seoul). 2022 Oct;37(5):703-718. doi: 10.3803/EnM.2022.1553. Epub 2022 Oct 4. PMID: 36193717; PMCID: PMC9633223 39. Kakudo K., Bychkov A., Bai Y., Li Y., Liu Z., Jung C.K. The new 4th edition World Health Organization classification for thyroid tumors, Asian perspectives. Pathol Int. 2018 Dec;68(12):641-664. doi: 10.1111/pin.12737. Epub 2018 Dec 7. PMID: 30537125. 40. Kawasaki K., Kai K., Tanaka N., Kido S., Ibi A., Minesaki A., Yamauchi M., Kuratomi Y., Aishima S., Nakashima M., Ito M. Collision tumor of a papillary and follicular thyroid carcinoma: a case report. Thyroid Res. 2023 Aug 7;16(1):24. doi: 10.1186/s13044-023-00167-3. PMID: 37544981; PMCID: PMC10405457. 41. Lavoie H., Gagnon J., Therrien M. ERK signalling: a master regulator of cell behaviour, life and fate. Nat Rev Mol Cell Biol. 2020 Oct;21(10):607-632. doi: 10.1038/s41580-020-0255-7. Epub 2020 Jun 23. PMID: 32576977. 42. Leboulleux S., Lamartina L., Hadoux J., Baudin E., Schlumberger M. Emerging drugs for the treatment of radioactive iodine refractory papillary thyroid cancer. Expert Opin Investig Drugs. 2022 Jul;31(7):669-679. doi: 10.1080/13543784.2022.2071696. Epub 2022 Jul 5. PMID: 35522027. 43. Li G., Lei J., Song L., Jiang K., Wei T., Li Z., Gong R., Zhu J. Radioiodine refractoriness score: A multivariable prediction model for postoperative radioiodine-refractory differentiated thyroid carcinomas. Cancer Med. 2018 Nov;7(11):5448-5456. doi: 10.1002/cam4.1794. Epub 2018 Sep 27. PMID: 30264548; PMCID: PMC6246937. 44. Liu R., Bishop J., Zhu G., Zhang T., Ladenson P.W., Xing M. Mortality Risk Stratification by Combining BRAF V600E and TERT Promoter Mutations in Papillary Thyroid Cancer: Genetic Duet of BRAF and TERT Promoter Mutations in Thyroid Cancer Mortality. JAMA Oncol. 2017 Feb 1;3(2):202-208. doi: 10.1001/jamaoncol.2016.3288. PMID: 27581851. 45. Liu X, Bishop J, Shan Y, Pai S, Liu D, Murugan AK, Sun H, El-Naggar AK, Xing M. Highly prevalent TERT promoter mutations in aggressive thyroid cancers. Endocr Relat Cancer. 2013 Jul 12;20(4):603-10. doi: 10.1530/ERC-13-0210. PMID: 23766237; PMCID: PMC3782569. 46. Liu X., Qu S., Liu R., Sheng C., Shi X., Zhu G., Murugan A.K., Guan H., Yu .H, Wang Y., Sun H., Shan Z., Teng W., Xing M. TERT promoter mutations and their association with BRAF V600E mutation and aggressive clinicopathological characteristics of thyroid cancer. J Clin Endocrinol Metab. 2014 Jun;99(6):E1130-6. doi: 10.1210/jc.2013-4048. Epub 2014 Mar 11. PMID: 24617711; PMCID: PMC4037723. 47. Luo Y., Jiang H., Xu W., Wang X., Ma B., Liao T., Wang Y. Clinical, Pathological, and Molecular Characteristics Correlating to the Occurrence of Radioiodine Refractory Differentiated Thyroid Carcinoma: A Systematic Review /n/0-d Meta-Analysis. Front Oncol. 2020 Sep 30;10:549882. doi: 10.3389/fonc.2020.549882. PMID: 33117686; PMCID: PMC7561400.]. 48. Luster M., Aktolun C., Amendoeira I., Barczyński M., Bible K.C., Duntas L.H., Elisei R., Handkiewicz-Junak D., Hoffmann M., Jarząb B. et al. European Perspective on 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: Proceedings of an Interactive International Symposium. Thyroid. 2019 Jan;29(1):7-26. doi: 10.1089/thy.2017.0129. Epub 2019 Jan 7. PMID: 30484394. 49. Maghsoomi Z, Emami Z, Malboosbaf R, Malek M, Khamseh ME. Efficacy and safety of peptide receptor radionuclide therapy in advanced radioiodine-refractory differentiated thyroid cancer and metastatic medullary thyroid cancer: a systematic review. BMC Cancer. 2021 May 20;21(1):579. doi: 10.1186/s12885-021-08257-x. PMID: 34016077; PMCID: PMC8139052. 50. Massimino M., Tirrò E., Stella S., Frasca F., Vella V., Sciacca L., Pennisi M.S., Vitale S.R., Puma A., Romano C., Manzella L. Effect of Combined Epigenetic Treatments and Ectopic NIS Expression on Undifferentiated Thyroid Cancer Cells. Anticancer Res. 2018 Dec;38(12):6653-6662. doi: 10.21873/anticanres.13032. PMID: 30504373. 51. Melo M., Gaspar da Rocha A., Batista R., Vinagre J., Martins M.J., Costa G., Ribeiro C., Carrilho F., Leite V. et al. TERT, BRAF, and NRAS in Primary Thyroid Cancer and Metastatic Disease. J Clin Endocrinol Metab. 2017 Jun 1;102(6):1898-1907. doi: 10.1210/jc.2016-2785. PMID: 28323937. 52. Mussazhanova Z., Shimamura M., Kurashige T., Ito M., Nakashima M., Nagayama Y. Causative role for defective expression of mitochondria-eating protein in accumulation of mitochondria in thyroid oncocytic cell tumors. Cancer Sci. 2020 Aug;111(8):2814-2823. doi: 10.1111/cas.14501. Epub 2020 Jun 30. PMID: 32458504; PMCID: PMC7419045. 53. Mussulmanova M., Targynova A., Mussazhanova Zh., Kaidarova S., Shalgimbayeva G., Mukanova A., Yeleubayeva Zh., Pak L., Bolsynbekova S., Serikbayuly D., Rakhmankulova A., Zhalimbetova Zh., Umirova R., Akhayeva T., Kurohama H., Nakashima M. BRAF and TERT promoter double mutations in papillary thyroid carcinoma with high-grade features: case report of young patient // Nauka i Zdravookhranenie [Science & Healthcare]. 2023, (Vol.25) 3, pp. 269-274. doi 10.34689/SH.2023.25.3.034 54. Na'ara S. et al. Efficacy of posttreatment radioiodine scanning in patients with differentiated thyroid cancer //Head & Neck. – 2019. – Т. 41. – №. 9. – С. 3235-3240. 55. Nikiforov Y.E., Nikiforova M.N. Molecular genetics and diagnosis of thyroid cancer. Nat Rev Endocrinol. 2011 Aug 30;7(10):569-80. doi: 10.1038/nrendo.2011.142. PMID: 21878896. 56. Paladino S., Melillo R.M. Editorial: Novel Mechanism of Radioactive Iodine Refractivity in Thyroid Cancer. J Natl Cancer Inst. 2017 Dec 1;109(12). doi: 10.1093/jnci/djx106. PMID: 30053081. 57. Petranović Ovčariček P., Campenni A., de Keizer B., Deandreis D., Kreissl M.C., Vrachimis A., Tuncel M., Giovanella L. Molecular Theranostics in Radioiodine-Refractory Differentiated Thyroid Cancer. Cancers (Basel). 2023 Aug 27;15(17):4290. doi: 10.3390/cancers15174290. PMID: 37686566; PMCID: PMC10486510. 58. Riesco-Eizaguirre G., Gutiérrez-Martínez P,. García-Cabezas M.A., Nistal M., Santisteban P. The oncogene BRAF V600E is associated with a high risk of recurrence and less differentiated papillary thyroid carcinoma due to the impairment of Na+/I- targeting to the membrane. Endocr Relat Cancer. 2006 Mar;13(1):257-69. doi: 10.1677/erc.1.01119. PMID: 16601293. 59. Sabra M.M., Dominguez J.M., Grewal R.K., Larson S.M., Ghossein R.A., Tuttle R.M., Fagin J.A. Clinical Outcomes and Molecular Profile of Differentiated Thyroid Cancers With Radioiodine-Avid Distant Metastases, The Journal of Clinical Endocrinology & Metabolism, Volume 98, Issue 5, 1 May 2013, Pages E829–E836, 60. Schlumberger M., Leboulleux S. Current practice in patients with differentiated thyroid cancer. Nat Rev Endocrin 2021;17(3):176–88. DOI: 10.1038/s41574-020-00448-z. 61. Schubert L., Mariko M.L., Clerc J., Huillard O., Groussin L. MAPK Pathway Inhibitors in Thyroid Cancer: Preclinical and Clinical Data. Cancers (Basel). 2023 Jan 24;15(3):710. doi: 10.3390/cancers15030710. PMID: 36765665; PMCID: PMC9913385. 62. Shen X., Liu R., Xing M. A six-genotype genetic prognostic model for papillary thyroid cancer. Endocr Relat Cancer. 2017 Jan;24(1):41-52. doi: 10.1530/ERC-16-0402. Epub 2016 Nov 14. PMID: 27875244; PMCID: PMC5132178. 63. Shobab L., Gomes-Lima C., Zeymo A., Feldman R., Jonklaas J., Wartofsky L., Burman K.D. Clinical, Pathological, and Molecular Profiling of Radioactive Iodine Refractory Differentiated Thyroid Cancer. Thyroid. 2019 Sep;29(9):1262-1268. doi: 10.1089/thy.2019.0075. PMID: 31319763. 64. Sidorin A.V., Abrosimov A.Y., Rogunovich T.I., Rumyantsev P.O., Nizhegorodova K.S., Isaev P.A., Shinkarkina A.P., Yamasita S., Saenko V.A. Klinicheskie, morfologicheskie i prognosticheskie osobennosti papilliarnogo raka shchitovidnoĭ zhelezy s razlichnym statusom BRAF, ustanovlennym immunogistokhimicheskim metodom [Clinical, morphological, and prognostic features of papillary thyroid carcinoma with different BRAF mutational status assessed by immunohistochemistry]. Arkh Patol. 2018;80(3):19-25. Russian. doi: 10.17116/patol201880319-25. PMID: 29927436. 65. Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021 May;71(3):209-249. doi: 10.3322/caac.21660. Epub 2021 Feb 4. PMID: 33538338. 66. Targynova A., Mussazhanova Z., Ueki N., Bolsynbekova S., Yeleubayeva Z., Kalmatayeva Z., Issayeva R., Sarsenova L., Umirova R., Serikbaiuly D., Nakashima M., Mukanova A.K., Madiyeva M.R. Anaplastic transformation OF BRAF and TERT promoter double mutant papillary thyroid carcinoma: clinical, morphological, and molecular genetic features // Nauka i Zdravookhranenie [Science & Healthcare]. 2021. №5. URL: 67. Tavares C., Coelho M.J., Eloy C., Melo M., da Rocha A.G., Pestana A., Batista R., Ferreira L.B., Rios E., Selmi-Ruby S., et al. NIS expression in thyroid tumors, relation with prognosis clinicopathological and molecular features. Endocr Connect. 2018 Jan;7(1):78-90. doi: 10.1530/EC-17-0302. PMID: 29298843; PMCID: PMC5754505. 68. Tavares C., Melo M., Cameselle-Teijeiro J.M., Soares P., Sobrinho-Simões M. Endocrine tumors: Genetic predictors of thyroid cancer outcome. Eur J Endocrinol. 2016 Apr;174(4):R117-26. doi: 10.1530/EJE-15-0605. Epub 2015 Oct 28. PMID: 26510840. 69. Tirrò E., Martorana F., Romano C., Vitale S.R., Motta G., Di Gregorio S., Massimino M., Pennisi M.S., Stella S., Puma A., Gianì F., Russo M., Manzella L., Vigneri P. Molecular Alterations in Thyroid Cancer: From Bench to Clinical Practice. Genes (Basel). 2019 Sep 13;10(9):709. doi: 10.3390/genes10090709. PMID: 31540307; PMCID: PMC6771012. 70. Troshina E.A., Mazurina N.V., Abesadze I.A., Yushkov P.V., Yegorycheva Ye.K. Follicular thyroid neoplasia (a lecture). Problems of Endocrinology. 2006;52(1):22-25. (In Russ.) 71. Tuttle R.M., Ahuja S., Avram A.M., Bernet V.J., Bourguet P., Daniels G.H., Dillehay G., Draganescu C., Flux G., Führer D. et al. Controversies, Consensus, and Collaboration in the Use of 131I Therapy in Differentiated Thyroid Cancer: A Joint Statement from the American Thyroid Association, the European Association of Nuclear Medicine, the Society of Nuclear Medicine and Molecular Imaging, and the European Thyroid Association. Thyroid. 2019 Apr;29(4):461-470. doi: 10.1089/thy.2018.0597. PMID: 30900516. 72. Ueda M., Matsuda K., Kurohama H., Mussazhanova Z., Sailaubekova Y., Kondo H., Shimizu T., Takada N., Matsuoka Y., Otsubo C., Sato S., Yamashita H., Kawakami A., Nakashima M. Molecular Pathological Characteristics of Thyroid Follicular-Patterned Tumors Showing Nodule-in-Nodule Appearance with Poorly Differentiated Component. Cancers (Basel). 2022 Jul 22;14(15):3577. doi: 10.3390/cancers14153577. PMID: 35892838; PMCID: PMC9331311. 73. Vaisman F., Carvalho D.P., Vaisman M. A new appraisal of iodine refractory thyroid cancer. Endocr Relat Cancer. 2015 Dec;22(6):R301-10. doi: 10.1530/ERC-15-0300. Epub 2015 Aug 25. PMID: 26307020. 74. Van Nostrand D. The benefits and risks of I-131 therapy in patients with well-differentiated thyroid cancer. Thyroid. 2009 Dec;19(12):1381-91. doi: 10.1089/thy.2009.1611. PMID: 20001720. 75. Vasil'ev E.V., Rumiantsev P.O., Saenko V.A., Il'in A.A., Poliakova E.I., Nemtsova M.V., Zaletaev D.V. Molekuliarnyĭ analiz strukturnykh narusheniĭ genoma papilliarnykh kartsinom shchitovidnoĭ zhelezy [Molecular analysis of structural abnormalities in papillary thyroid carcinoma gene]. Mol Biol (Mosk). 2004 Jul-Aug;38(4):642-53. Russian. PMID: 15456136. 76. Vella V., Malaguarnera R. The Emerging Role of Insulin Receptor Isoforms in Thyroid Cancer: Clinical Implications and New Perspectives. Int J Mol Sci. 2018 Nov 30;19(12):3814. doi: 10.3390/ijms19123814. PMID: 30513575; PMCID: PMC6321330. 77. Vitale G., Pellegrino G., Desiderio E., Barrea L. Radioiodine-refractory thyroid cancer: a complex challenge. Minerva Med. 2021 Dec;112(6):686-688. doi: 10.23736/S0026-4806.21.07845-9. Epub 2021 Oct 21. PMID: 34672171. 78. Vuong H.G., Altibi A.M.A., Duong U.N.P., Hassell L. Prognostic implication of BRAF and TERT promoter mutation combination in papillary thyroid carcinoma-A meta-analysis. Clin Endocrinol (Oxf). 2017 Nov;87(5):411-417. doi: 10.1111/cen.13413. Epub 2017 Aug 2. PMID: 28666074. 79. Wassermann J., Bernier M.O., Spano J.P., Lepoutre-Lussey C., Buffet C., Simon J.M., Ménégaux F., Tissier F., Leban M., Leenhardt L. Outcomes and Prognostic Factors in Radioiodine Refractory Differentiated Thyroid Carcinomas. Oncologist. 2016 Jan;21(1):50-8. doi: 10.1634/theoncologist.2015-0107. Epub 2015 Dec 16. PMID: 26675742; PMCID: PMC4709201. 80. Xing M., Liu R., Liu X., Murugan A.K., Zhu G., Zeiger M.A., Pai S., Bishop J. BRAF V600E and TERT promoter mutations cooperatively identify the most aggressive papillary thyroid cancer with highest recurrence. J Clin Oncol. 2014 Sep 1;32(25):2718-26. doi: 10.1200/JCO.2014.55.5094. Epub 2014 Jul 14. PMID: 25024077; PMCID: PMC4145183. 81. Xing M. BRAF mutation in papillary thyroid cancer: pathogenic role, molecular bases, and clinical implications. Endocr Rev. 2007 Dec;28(7):742-62. doi: 10.1210/er.2007-0007. Epub 2007 Oct 16. PMID: 17940185. 82. Xing M. Molecular pathogenesis and mechanisms of thyroid cancer. Nat Rev Cancer. 2013 Mar;13(3):184-99. doi: 10.1038/nrc3431. PMID: 23429735; PMCID: PMC3791171. 83. Yang X., Li J., Li X., Liang Z., Gao W., Liang J., Cheng S., Lin Y. TERT Promoter Mutation Predicts Radioiodine-Refractory Character in Distant Metastatic Differentiated Thyroid Cancer. J Nucl Med. 2017 Feb;58(2):258-265. doi: 10.2967/jnumed.116.180240. Epub 2016 Aug 4. PMID: 27493271. 84. Yavuz S., Puckett Y. Iodine-131 Uptake Study. 2023 Oct 29. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan–. PMID: 32644709. 85. Yoo S.K., Lee S., Kim S.J., Jee H.G., Kim B.A., Cho H., Song Y.S., Cho S.W., Won J.K., Shin J.Y. et al. Comprehensive Analysis of the Transcriptional and Mutational Landscape of Follicular and Papillary Thyroid Cancers. PLoS Genet. 2016 Aug 5;12(8):e1006239. doi: 10.1371/journal.pgen.1006239. PMID: 27494611; PMCID: PMC4975456. 86. Yu J, Liu Z, Su Y, Peng X, Xie Y. Tyrosine kinase inhibitors for radioiodine refractory differentiated thyroid cancer: A systematic review and meta-analysis. Clin Endocrinol (Oxf). 2024 Apr;100(4):379-388. doi: 10.1111/cen.15027. Epub 2024 Feb 13. PMID: 38351437. 87. Yujia Liu, Jiafeng Wang, Xiaoping Hu, Zongfu Pan, Tong Xu, Jiajie Xu, Liehao Jiang, Ping Huang, Yiwen Zhang, Minghua G. Radioiodine therapy in advanced differentiated thyroid cancer: Resistance and overcoming strategy, Drug Resistance Updates, Volume 68, 2023, 100939, ISSN 1368-7646, 88. Zhang Y., Wu Q.L., Yun J.P. [Interpretation of the fourth edition of WHO pathological classification of the thyroid tumors in 2017]. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2018 Sep 7;53(9):718-720. Chinese. doi: 10.3760/cma.j.issn.1673-0860.2018.09.020. PMID: 30293272. 89. Zheng X., Xu Z., Ji Q., Ge M., Shi F., Qin J., Wang F., Chen G., Zhang Y., Huang R., et al. A Randomized, Phase III Study of Lenvatinib in Chinese Patients with Radioiodine-Refractory Differentiated Thyroid Cancer. Clin Cancer Res. 2021 Oct 15;27(20):5502-5509. doi: 10.1158/1078-0432.CCR-21-0761. Epub 2021 Jul 29. PMID: 34326132; PMCID: PMC9401493 References: 1. Abdrashitova A.T., Panova T.N., D'yakova O.N., Dzhuvalyakov S.G., Teplyi D.L. Podkhody k rannei diagnostike raka shchitovidnoi zhelezy [Approaches to early diagnosis of thyroid cancer]. Kubanskii nauchnyi meditsinskii vestnik zhelezy [Kuban Scientific Medical bulletin]. 2018. 25(3):139–148. [in Russian] 2. Amirov E.V., Fedorov V.E., Zahohov R.M. Rezul'taty hirurgicheskogo lecheniya uzlovyh obrazovanij shchitovidnoj zhelezy u zhenshchin reproduktivnogo vozrasta [Results of surgical treatment of thyroid nodules in women of reproductive age] // Medicinskij al'manah [Medical almanac]. 2013. №6 (30). S. 184-186. [in Russian] 3. Bel'tsevich D.G., Mudunov A.M., Vanushko V.E., Rumyantsev P.O., Mel'nichenko G.A., Kuznetsov N.S., Podvyaznikov S.O., Alymov Yu.V. i dr. Differentsirovannyi rak shchitovidnoi zhelezy [Differentiated thyroid cancer]. Sovremennaya onkologiya [Modern oncology]. 2020. T. 22. №4. pp. 30-44. doi: 10.26442/18151434.2020.4.200507 [in Russian] 4. Borodavina E.V., Krylov V.V., Isaev P.A., Shurinov A.Yu., Rodichev A.A. (Ne na meste) Istoricheskie aspekty i sovremennye kontseptsii v lechenii bol'nykh differentsirovannym rakom shchitovidnoi zhelezy, refrakternym k terapii radioaktivnym iodom [Historical aspects and modern concepts in the treatment of patients with differentiated thyroid cancer refractory to radioactive iodine therapy]. Opukholi golovy i shei [Head and Neck Tumors]. 2021. T.11. №.4. p. 119-130. [in Russian] 5 Garipov K. A., Afanas'eva Z. A., Gafiullina A. D. Rol' apoptoza v formirovanii radiojodrezistentnosti pri differencirovannom rake shchitovidnoj zhelezy [The role of apoptosis in the formation of radioiodine resistance in differentiated thyroid cancer] //Vestnik Avicenny [Avicenna Bulletin]. – 2020. – T. 22. – №. 2. – S. 301-310. [in Russian] 6. Denisenko N.P., Shuev G.N., Mukhamadiev R.Kh., Perfil'eva O.M., Kazakov R.E., Kachanova A.A., Milyutina O.I., Konenkova O.V. i dr. Geneticheskie markery, assotsiirovannye s rezistentnost'yu k radioiodterapii, u bol'nykh rakom shchitovidnoi zhelezy [Genetic markers associated with resistance to radioiodine therapy in patients with thyroid cancer]. Sovremennaya onkologiya [Modern Oncology]. 2022. T.24. №.3. pp. 345-350. [in Russian] 7. Ponkina O.N. Klassifikatsiya opukholei shchitovidnoi zhelezy (VOZ, 2017): aktsent na prognoz [Emphasis on prognosis]. Innovatsionnaya meditsina Kubani [Innovative medicine of Kuban]. 2017. T.8. №4. pp. 53-59. URL: (data obrashcheniya: 29.03.2023). [in Russian] 8. Romashchenko P.N., Maistrenko N.A., Krivolapov D.S., Simonova M.S. Molekulyarno-geneticheskie issledovaniya v khirurgii shchitovidnoi zhelezy [Molecular genetic studies in thyroid surgery]. Tavricheskii mediko-biologicheskii vestnik [Tauride Medical and Biological Bulletin]. 2021. T. 24. №2. pp.118-126. URL: [in Russian] 9. Rumyantsev P.O., Nikiforovich P.A., Poloznikov A.A., Abrosimov A.Yu., Saenko V.A., Rogunovich T.I., Budzin A.A., Polyakov A.P., i dr. Mutatsiya BRAFV600E pri papillyarnom rake shchitovidnoi zhelezy. Klinicheskie i metodologicheskie aspekty [BRAFV600E mutation in papillary thyroid cancer. Clinical and methodological aspects]. Voprosy onkologii [Issues of oncology]. 2019. T.65. No.1. pp.16-26. [in Russian] 10. Shurinov A.Yu., Krylov V.V., Borodavina E.V. Radioiodablatsiya pri rake shchitovidnoi zhelezy. Istoricheskie i sovremennye aspekty. Obzor literatury [Radioiodine ablation for thyroid cancer. Historical and modern aspects. Literature review]. Onkologicheskii zhurnal: luchevaya diagnostika, luchevaya terapiya [Oncological journal: radiation diagnostics, radiation therapy]. 2021. T. 4. №. 4. pp.9-19. [in Russian] 11. Shurinov A.Yu., Borodavina E.V. Dinamicheskii kontrol' posle radioiodablyatsii pri differentsirovannom rake shchitovidnoi zhelezy: vzglyad radiologa [Dynamic control after radioiodine ablation for differentiated thyroid cancer: a radiologist’s view]. Opukholi golovy i shei [Head and Neck Tumors]. 2023. T.13. No.1. pp. 91-101. URL: [in Russian]
Number of Views: 226

Category of articles: Reviews

Bibliography link

Rakhmankulova A.M., Pak L.A., Pivina L.M., Tanatarov S.Z, Atantayeva B.Zh., Mussulmanova M.A., Bolsynbekova S.O., Kabildina N.A., Baurzhan A.B. Radioiodine-resistant differentiated thyroid cancer: clinicopathological characteristics, molecular genetic alterations. Review // Nauka i Zdravookhranenie [Science & Healthcare]. 2024. Vol.26 (2), pp. 158-170. doi 10.34689/SH.2024.26.2.019

Авторизируйтесь для отправки комментариев