CHARACTERISTICS OF THE INTESTINAL MICROBIOME IN STROKE PATIENTS WITH INSULIN RESISTANCE
Introduction. Advances have been made in the treatment and prevention of stroke in recent decades, but its burden remains high. New targets are needed to improve outcomes. Recent studies highlight the role of the intestinal microbiota in the pathogenesis of stroke. Changes in the composition of the microbiota, known as dysbiosis, are associated with risk factors for stroke such as obesity, metabolic disorders and atherosclerosis. In acute cerebral ischemia, the intestinal microbiota affects the interactions between the intestine and the brain, forming the microbiota- intestine -brain axis. Dysbiosis before a stroke affects its outcomes. Clinical studies show that in acute ischemic stroke, dysbiosis is associated with metabolism, inflammation, and functional outcomes. Modulation of the microbiota or its metabolites improves conditions associated with the pathogenesis of stroke, including inflammation, cardiometabolic diseases, atherosclerosis, and thrombosis.
Aim: to study the characteristics of the intestinal microbiome in patients with stroke and insulin resistance.
Materials and methods: observational, analytical, and cross-sectional methods, taxonomic analysis of the intestinal microbiota, and NGS sequencing.
Results. A species analysis of the microbiota in patients with stroke and IR revealed a correlation with lactate-producing bacteria Streptococcus, butyrate- and acetate-producing bacteria Bacteroides (dorei, massiliensis, plebeius, tobetsuensis) and Dialester invisus, a propionate producer. The presence of such poorly understood predictors of stroke in patients with insulin resistance suggests a possible influence of the intestinal microbiota in maintaining inflammation, blood pressure formation, and stroke in patients with insulin resistance. The role of bacteria producing acetate, butyrates, and propionates in the active fermentation of starches, affecting triglycerides with a subsequent increase in insulin resistance is shown. Host-microbiota interactions involving inflammatory and metabolic pathways appear to play a role in the occurrence of cardiovascular diseases. Lactate-, butyrate-, and propionate producing bacteria are of no small importance in the pathogenesis of hypertension with IR.
Conclusions. The obtained results underscore a potential link between dysbiosis associated with stroke and the balance of organic acids produced by intestinal bacteria, specifically an inverse relationship between stroke and the levels of acetate and butyrate. One contributing factor is intestinal inflammation related to dysbiosis, which helps maintain high blood pressure.
Gulshara Zh. Abildinova1, https://orcid.org/0000-0003-0543-9568
Aizhan Zh. Abildinova2,
Gulzhanat S. Urazbaeva 1, https://orcid.org/0000-0001-6723-4598
Zhanat B. Bekzhigitova1, Laura M. Ainabekova1,
Ainash S. Orazalina3, http://orcid.org/0000-0003-4594-0138
Zhanargyl K. Smailova3, https://orcid.org/0000-0002-4513-4614
Nailya Zh. Chaizhunusova3, https://orcid.org/0000-0002-6660-7118
Dariya M. Shabdarbayeva3, httр://оrсіd.оrg/0000-0001-9463-1935
1 Hospital of the Office of the President of the Republic of Kazakhstan, Astana, Republic of Kazakhstan;
2 City Polyclinic № 9, Astana, Republic of Kazakhstan;
3 Semey Medical University, Semey, Republic of Kazakhstan.
1. Arkan M.C., Hevener A.L., Greten F.R. et al. IKK-β links inflammation to obesity-induced insulin resistance. Nat. Med. 2005. № 11. РP. 191-198.
2. Benakis C., Poon C., Lane D., et al. Distinct commensal bacterial signature in the gut is associated with acute and long-term protection from ischemic stroke. Stroke. 2020, 51. pp. 1844–1854.
3. Caporaso J.G., Lauber C.L., Costello E.K. et al. Moving pictures of the human microbiome. Genom Biol. 2011.V.12. P. 50.
4. Chen Y., Liang J., Ouyang F., et al. Persistence of gut microbiota dysbiosis and chronic systemic inflammation after cerebral infarction in cynomolgus monkeys. Front. Neurol. 2019.V.10. pp.661.
5. Cipolla M.J., Liebeskind D.S., Chan S.L. The Importance of Comorbidities in Ischemic Stroke: Impact of Hypertension on the Cerebral Circulation. J. Cereb Blood Flow Metab. 2018. V.38(12). pp. 2129–49.
6. Claesson M.J., Cusack S., O’Sullivan O. et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc. Natl. Acad. Sci. USA. 2011, V. 108. pp. 4586-4591.
7. Costello E.K., Lauber C.L., Hamady M. et al. Bacterial community variation in human body habitats across space and time. Science. 2009. V. 326. pp. 1694-1697.
8. Creely S., McTernan P.G., Kusminski C.M. et al. Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am J Phys Endocrinol Metabol. 2007. V. 292. pp. E740- E747.
9. Glass C.K., Olefsky J.M. Inflammation and lipid signaling in the etiology of insulin resistance. Cell Metabol. 2012. № 15, V. 5. pp. 635-645.
10. Jian S., Martin S.O., Liping Z. The gut microbiota, obesity and insulin resistance. Mol Aspects Med. 2013. 34(1). pp.39-58. DOI: 10.1016/j.mam.2012.11.001.
11. Jinchen W., Hongfei Zh., Jianying H. et al. The Role of the Gut Microbiota in the Development of Ischemic Stroke. Immunol. 2022. 13 DOI:10.3389/fimmu.2022.845243.
12. Kaindi D.W.M., Kogi-Makau W., Lule G.N. et al. Colorectal cancer-associated Streptococcus infantarius subsp. infantarius differ from a major dairy lineage providing evidence for pathogenic, pathobiont and food-grade lineages. Sci. Rep. 2018. №8(1). p. 9181.
13. Katsimichas T., Antonopoulos A.S., Katsimichas A. et al. The intestinal microbiota and cardiovascular disease. Cardiovascular Research. 2019. DOI: 10.1093/cvr/cvz135.
14. Koboziev I., Webb C.R., Furr K.L., Grisham M.B. Role of the enteric microbiota in intestinal homeostasis and inflammation. Free Rad. Biol. Med. 2014. V.68. pp. 122-133.
15. Li J., Zhao F., Wang Y., Chen J., Tao J., Tian G., et al. Gut Microbiota Dysbiosis Contributes to the Development of Hypertension. Microbiome. 2017. V. 5(1). pp.14. DOI: 10.1186/s40168-016-0222-x.
16. Ma J., Li H. The role of gut microbiota in atherosclerosis and hypertension. Front Pharmacol. 2018. №9. p.1082. DOI:10.3389/fphar.2018.01082.
17. Pluta R., Januszewski S.; Czuczwar S.J. The Role of Gut Microbiota in an Ischemic Stroke. Int.J.Mol.Sci. 2021. V.22. p. 915. DOI: 10.3390/ijms22020915.
18. Pluznick J.J. Gut Microbes: A Novel SCFA Receptor, the Microbiota, and Blood Pressure Regulation. Gut Microbe. 2014. V.5(2). pp.202–207. DOI:10.4161/gmic.27492.
19. Pokrzywnicka P., Gumprecht J. Intestinal microbiota and its relationship with diabetes and obesity. Clin. Diabetol. 2016, V.5. pp. 164–172.
20. Powers W.J., Clarke W.R., Grubb R.L., Videen T.O., Adams H.P., Derdeyn C.P. Lower Stroke Risk With Lower Blood Pressure in Hemodynamic Cerebral Ischemia. Neurology. 2014. 82(12). pp.1027–1032. DOI: 10.1212/WNL.0000000000000238.
21. Razavi A.C., Potts K.S., Kelly T.N., Bazanno L.A. Sex, gut microbiome and cardiovascular disease risk // Biol. Sex. Differ. 2019. №10(1). p.29.
22. Robles-Vera I., Toral M., de la Visitación N. et al. Probiotics Prevent Dysbiosis and the Rise in Blood Pressure in Genetic Hypertension: Role of Short-Chain Fatty Acids. Mol. Nutr. Food Res. 2020. №64(6):e1900616.
23. Singh V., Roth S., Lovera G., Sadler R., Garzetti D., Stecher B., Dichgans M., Liesz A. Microbiota dysbiosis controls the neuroin flammatory response after stroke. J. Neurosci. 2016. V.36. РP.7428–7440. DOI:10.1523/JNeurosci.1114-16.2016.
24. Snel M., Jonker J.T., Schoones J. et al. Ectopic Fat and Insulin Resistance: Pathophysiology and Effect of Diet and Lifestyle Interventions. Intern J Endocrinol. 2012. pp.1-18.
25. Turnbaugh P.J., Ridaura V.K. et al. The effect of diet on the human gut microbiome: A metagenomic analysis in humanized gnotobiotic mice. Sci Trans Med. 2009. № 1. pp. 6-14.
26. Wu G.D., Chen J., Hoffmann C. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011. V. 334. pp. 105-108.
27. Yin J., Liao S.X., He Y., Wang S., Xia G.H., Liu F.T., Zhu J.J., You C., Chen Q., Zhou L. Dysbiosis of gut microbiota with reduced trimethylamine-n-oxide level in patients with large-artery atherosclerotic stroke or transient ischemic attack. J. Am. Heart Assoc. 2015. №4. e002699. DOI: 10.1161/JAHA.115.002699.
28. Zhu S., Xu G. Targeting gut microbiota: A potential promising therapy for diabetic kidney disease. Am. J. Transl. Res. 2016, V.8. pp. 4009–4016.
Number of Views: 5
Category of articles:
Original articles
Bibliography link
Abildinova G.Zh., Abildinova A.Zh., Urazbaeva G.S., Bekzhigitova Zh.B., Ainabekova L.M., Orazalina A.S., Smailova Zh.K., Chaizhunusova N.Zh., Shabdarbayeva D.M. Characteristics of the intestinal microbiome in stroke patients with insulin resistance // Nauka i Zdravookhranenie [Science & Healthcare]. 2024. Vol.26 (6), pp. 49-55. doi 10.34689/SH.2024.26.6.006Related publications:
THE RELATIONSHIP BETWEEN BODY MASS INDEX AND BONE MINERAL DENSITY IN THE MIDDLE-AGED AND ELDERLY POPULATION
CHARACTERISTICS OF THE INTESTINAL MICROBIOME IN STROKE PATIENTS WITH INSULIN RESISTANCE
VALIDATION OF THE KAZAKH VERSION OF THE DEPRESSION ANXIETY STRESS SCALE (DASS-21) IN MEDICAL FACULTY STAFF SAMPLE: THE PILOT STUDY
PREDICTIVE VALUE OF PSYCHOMETRIC TESTING IN CONTEXT OF CREATING ADAPTIVE ENVIRONMENT FOR HIGHER MEDICAL EDUCATION
ASSESSMENT OF STUDENTS' AWARENESS ABOUT THE HARMS OF MICROPLASTICS ON THE HUMAN BODY