Online ISSN: 3007-0244,
Print ISSN:  2410-4280
GENETIC SUSCEPTIBILITY TO RADIATION-RELATED DISEASES: A REVIEW OF CURRENT LITERATURE
This review aims to synthesize current knowledge on genetic determinants of radiosensitivity, emphasizing findings from candidate gene studies and genome-wide association studies (GWAS), and discuss their clinical implications. Methods: We conducted a literature-based analysis of genetic polymorphisms associated with radiation-related outcomes, focusing on genes involved in DNA repair, cell cycle regulation, oxidative stress response, and tissue remodeling. Results: Variants in genes such as XRCC1, XRCC3, TP53, TGFβ1, and SOD2 have been linked to increased radiosensitivity and risk of adverse outcomes following radiation exposure. GWAS have identified novel loci (TANC1, RAD51L1, KIF26B) associated with normal tissue toxicity and secondary malignancies. While promising, most findings require further validation in diverse populations and clinical settings. Conclusion: Understanding genetic susceptibility to radiation is essential for advancing personalized radiotherapy and improving public health strategies. Future research should prioritize multi-locus models, functional validation, and the ethical integration of genetic data into clinical and occupational contexts.
Altay A. Dyussupov – Doctor of Medical Sciences, Professor, Chairman of the Board – Rector NJSC "Semey Medical University", Semey, Republic of Kazakhstan. https://orcid.org/0000-0003-0875-1020; Gulshara Zh. Abildinova – Doctor of Medical Sciences, Head of the Laboratory of Personalized Genomic Diagnostics, Hospital of the Medical Center of the Administration of the President of the Republic of Kazakhstan, Astana, Republic of Kazakhstan. https://orcid.org/0000-0003-0543-9568; Dariya M. Shabdarbayeva – Doctor of Medical Sciences, Professor, Vice-Rector for Science and Strategic Development, NJSC "Semey Medical University", Semey, Republic of Kazakhstan. https://orcid.org/0000-0001-9463-1935; Meruyert R. Massabayeva – PhD, Associate Professor, Chief Researcher, NJSC "Semey Medical University", Semey, Republic of Kazakhstan. https://orcid.org/0000-0001-8240-361X; Lyudmila M. Pivina – MD, Professor, NJSC "Semey Medical University", Semey, Republic of Kazakhstan. https://orcid.org/0000-0002-8035-4866; Andrey Yu. Orekhov – PhD, NJSC "Semey Medical University", Semey, Republic of Kazakhstan. https://orcid.org/0000-0001-7201-1399; Alexandra V. Lipikhina – PhD, Deputy Director for Research, Research Institute of Radiation Medicine and Ecology, NJSC "Semey Medical University", Semey, Republic of Kazakhstan. https://orcid.org/0000-0001-6980-999X; Zhanargul K. Smailova – Candidate of Medical Sciences, Associate Professor, Vice-Rector for Academic and Educational Work, NJSC "Semey Medical University", Semey, Republic of Kazakhstan. https://orcid.org/0000-0002-4513-4614; Rauana M. Kisina – PhD student, NJSC "Semey Medical University", Semey, Republic of Kazakhstan. https://orcid.org/0000-0002-1503-4663; Galiya A. Alibayeva – Deputy Director for Medical Affairs and Strategic Development, Emergency Medical Hospital of Semey, Semey, Republic of Kazakhstan. https://orcid.org/0000-0002-1503-4663; Orazalina Ainash Saparovna – Candidate of Biological Sciences, Associate Professor, Head of the Department of Molecular Biology and Medical Genetics named after Academician of the National Academy of Sciences of the Republic of Kazakhstan T.K. Raisov, NJSC «Semey Medical University», phone; +7-777-235-47-72; e-mail: ainash.orazalina@smu.edu.kz; https://orcid.org/0000- 0003-4594-0138; Semey, Kazakhstan; Ayaulym M. Yesentayeva – NJSC "Semey Medical University", Semey, Republic of Kazakhstan ORCID: –; Vladlena R. Sabitova – NJSC "Semey Medical University", Semey, Republic of Kazakhstan. https://orcid.org/0000-0002-5893-3618; Assel Zh. Baibussinova – PhD, NJSC "Semey Medical University", Semey, Republic of Kazakhstan. https://orcid.org/0000-0003-3447-6245; Askar B. Qasymov – Vice-Rector for Strategy and Social Development, NJSC "Shakarim University of Semey", Semey, Republic of Kazakhstan. https://orcid.org/0000-0002-1983-6508; Aleksei Klivenko – Head of the Scientific Center for Radioecological Research, NJSC "Shakarim University of Semey", Semey, Republic of Kazakhstan. https://orcid.org/0000-0002-8971-686X; Madina B. Abenova – PhD, NJSC "Semey Medical University", Semey, Republic of Kazakhstan. https://orcid.org/0000-0002-4219-5737; Diana Ygyyeva – NJSC "Semey Medical University", Semey, Republic of Kazakhstan. https://orcid.org/0000-0001-8391-8842; Saulesh A. Apbasova – NJSC "Semey Medical University", Semey, Republic of Kazakhstan. https://orcid.org/0000-0001-6981-5441; Murat N. Lepesbayev – Resident, Department of Forensic Medicine, JSC "Astana Medical University", Astana, Republic of Kazakhstan. https://orcid.org/0009-0006-9810-9232; Nailya Zh. Shaizhunussova – Doctor of Medical Sciences, Professor, NJSC "Semey Medical University", Semey, Republic of Kazakhstan. https://orcid.org/0000-0002-6660-7118.
1. Andreassen C.N., Alsner J. Genetic variants and normal tissue toxicity after radiotherapy: A systematic review. Radiother. Oncol. 2009. Vol. 92, № 3. P. 299–309. https://doi.org//10.1016/j.radonc.2009.06.015 2. Anscher M.S., Kong F.M., Andrews K., et al. Plasma transforming growth factor beta1 as a predictor of radiation pneumonitis. Int. J. Radiat. Oncol. Biol. Phys. 1998. Vol. 41, № 5. P. 1029–1035. https://doi.org//10.1016/s0360-3016(98)00154-0 3. Barnett G.C., West C.M., Dunning A.M., et al. Normal tissue reactions to radiotherapy: towards tailoring treatment dose by genotype. Nat. Rev. Cancer. 2009. Vol. 9, № 2. P. 134–142. https://doi.org//10.1038/nrc2587 4. Belli M., Tabocchini M.A. Ionizing radiation-induced epigenetic modifications and their relevance to radiation protection. Int. J. Mol. Sci. 2020. Vol. 21, № 17. P. 5993. https://doi.org//10.3390/ijms21175993 5. Bentzen S.M. Preventing or reducing late side effects of radiation therapy: radiobiology meets molecular pathology. Nat. Rev. Cancer. 2006. Vol. 6, № 9. P. 702–713. https://doi.org//10.1038/nrc1950 6. Cargnin S., Barizzone N., Basagni C., et al. Targeted next-generation sequencing for the identification of genetic predictors of radiation-induced late skin toxicity in breast cancer patients: a preliminary study. J. Pers. Med. 2021. Vol. 11, № 10. P. 967. https://doi.org//10.3390/jpm11100967 7. Field M., Hardcastle N., Jameson M., et al. Machine learning applications in radiation oncology. Phys. Imaging Radiat. Oncol. 2021. Vol. 19. P. 13–24. https://doi.org//10.1016/j.phro.2021.05.007 8. Chen H., Huang L., Wan X., et al. Polygenic risk score for prediction of radiotherapy efficacy and radiosensitivity in patients with non-metastatic breast cancer. Radiat. Med. Prot. 2023. Vol. 4, № 1. P. 33–42. https://doi.org//10.1016/j.radmp.2023.01.001 9. Kerns S.L., Chuang K.H., Hall W., et al. Radiation biology and oncology in the genomic era. Br. J. Radiol. 2018. Vol. 91, № 1091. P. 20170949. https://doi.org//10.1259/bjr.20170949 10. Kerns S.L., Dorling L., Fachal L., et al. Meta-analysis of genome-wide association studies identifies genetic markers of late toxicity after radiotherapy for prostate cancer. Nat. Commun. 2020. Vol. 11, № 1. P. 4159. https://doi.org//10.1016/j.ijrobp.2018.01.054 11. Chen M., Lu H., Copley S.J., et al. A novel radiogenomics biomarker for predicting treatment response and pneumotoxicity from programmed cell death protein or ligand-1 inhibition immunotherapy in NSCLC. J. Thorac. Oncol. 2023. Vol. 18, № 6. P. 718–730. https://doi.org//10.1016/j.jtho.2023.01.089 12. Morton L.M., Karyadi D.M., Stewart C., et al. Radiation-related genomic profile of papillary thyroid carcinoma after the Chernobyl accident // Science. – 2021. – Vol. 372, № 6543. – P. eabg2538. https://doi.org//10.1126/science.abg2538 13. Preston D.L., Ron E., Tokuoka S., et al. Solid cancer incidence in atomic bomb survivors: 1958–1998. Radiat. Res. 2007. Vol. 168, № 1. P. 1–64. https://doi.org//10.1667/RR0763.1 14. Rübe C.E., Grudzenski S., Kühne M., et al. DNA double-strand break repair of blood lymphocytes and normal tissue toxicity after radiotherapy. Nat. Med. 2008. Vol. 14, № 7. P. 735–741. https://doi.org//10.1158/1078-0432.CCR-07-5147 15. Kerns S.L., Fachal L., Dorling L., et al. Radiogenomics Consortium genome-wide association study meta-analysis of late toxicity after prostate cancer radiotherapy. JNCI J. Natl. Cancer Inst. 2020. Vol. 112, № 2. P. 179–190. https://doi.org//10.1093/jnci/djz075 16. Thenault R., Gasmi A., Khene Z.E., et al. Radiogenomics in prostate cancer evaluation. Curr. Opin. Urol. 2021. Vol. 31, № 4. P. 424–429. https://doi.org//10.1097/MOU.0000000000000902 17. Tronko M.D., Howe G.R., Bogdanova T.I., et al. A cohort study of thyroid cancer and other thyroid diseases after the Chernobyl accident: thyroid cancer in Ukraine detected during first screening. J. Natl. Cancer Inst. 2006. – Vol. 98, № 13. P. 897–903. https://doi.org//10.1093/jnci/djj244 18. Turcotte L.M., Whitton J.A., Friedman D.L., et al. Risk of subsequent neoplasms during the fifth and sixth decades of life in the childhood cancer survivor study cohort. J. Clin. Oncol. 2015. Vol. 33, № 31. P. 3568–3575. https://doi.org//10.1200/JCO.2015.60.9487 19. Vousden K.H., Lane D.P. p53 in health and disease. Nat. Rev. Mol. Cell Biol. 2007. Vol. 8, № 4. P. 275–283. https://doi.org//10.1038/nrm2147 20. Shakhtarin V.V., Tsyb A.F., Stepanenko V.F., et al. Iodine deficiency, radiation dose, and the risk of thyroid cancer among children and adolescents in the Bryansk region of Russia following the Chernobyl power station accident. Int. J. Epidemiol. 2003. Vol. 32, № 4. P. 584–591. https://doi.org//10.1093/ije/dyg205 21. Rühm W., Laurier D., Wakeford R. Cancer risk following low doses of ionising radiation – current epidemiological evidence and implications for radiological protection. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2022. Vol. 873. P. 503436. https://doi.org//10.1016/j.mrgentox.2021.503436 22. Hall W.A., Bergom C., Thompson R.F., et al. Precision oncology and genomically guided radiation therapy: a report from the American Society for Radiation Oncology/American Association of Physicists in Medicine/National Cancer Institute Precision Medicine Conference. Int. J. Radiat. Oncol. Biol. Phys. 2018. Vol. 101, № 2. P. 274–284. https://doi.org//10.1016/j.ijrobp.2017.05.044 23. Wood R.D., Mitchell M., Sgouros J., Lindahl T. Human DNA repair genes. Science. 2001. Vol. 291, № 5507. P. 1284–1289. https://doi.org//10.1126/science.1056154 24. Zhang X., Yang J. Role of non-coding RNAs on the radiotherapy sensitivity and resistance of head and neck cancer: from basic research to clinical application. Front. Cell Dev. Biol. 2020. Vol. 8. P. 637435. https://doi.org//10.3389/fcell.2020.637435 25. Xu L., Osei B., Osei E. A review of radiation genomics: integrating patient radiation response with genomics for personalised and targeted radiation therapy. J. Radiother. Pract. 2019. Vol. 18, № 2. P. 198–209. https://doi.org//10.1017/S1460396918000547
Number of Views: 22


Category of articles: Reviews

Bibliography link

Dyussupov A.A., Abildinova G.Zh., Shabdarbayeva D.M., Massabayeva M.R., Pivina L.M., Orekhov A.Yu., Lipikhina A.V., Smailova Zh.K., Kisina R., Alibayeva G.A., Orazalina A.S., Yesentayeva A.M., Sabitova V.R., Baibussinova A.Zh., Qasymov A.B., Klivenko A., Abenova M.B., Ygyyeva D.G, Apbasova S.A., Lepesbayev M.N., Shaizhunussova N.Zh. Genetic susceptibility to radiation-related diseases: a review of current literature // Nauka i Zdravookhranenie [Science & Healthcare]. 2025. Vol.27 (2), pp. 145-153. doi 10.34689/SH.2025.27.2.017

Авторизируйтесь для отправки комментариев