Online ISSN: 3007-0244,
Print ISSN:  2410-4280
PERSPECTIVE APPROACHES FOR TREATMENT OF LOW-ENERGY INJURY BONE TISSUE INJURIES USING BIOENGINEERING METHODS AND CELL THERAPY
Introduction: Autologous mesenchymal stem cells (MSCs) are osteogenesis progenitor cells that activate the reparative processes in the zone of delayed fracture healing in osteoporosis and similar bone pathologies. Use of MSCs in regenerative medicine is one of the promising areas of scientific research. In this regard, in cooperation with Carnegie Mellon University (USA), an osteophilic bisphosphonate polymer capable of stably binding to MSC has been developed as a targeted transport platform. It has been previously shown that the polymer is able to inhibit osteoclastic activity in vitro, and, at the same time, it is not cytotoxic and does not affect the osteogenic differentiation of MSCs. Goal: to perform preclinical studies of acute and chronic polymer toxicity, to assess the regenerative potential of local transplantation of MSCs functionalized with an osteophilic polymer in experimentally induced osteoporotic ulna fracture of small laboratory animals. Methods: To confirm the therapeutic potential of MSCs functionalized with osteophilic polymer, in vivo studies were conducted on rats with the experimentally induced ulna fracture and experimental estrogen-dependent osteoporosis. Studies of acute and chronic toxicity of an osteophilic bisphosphonate polymer were carried out on the basis of the Republican State Pharmacopoeia Laboratory at the National Center for Expertise of Medicines, Medical Devices and Medical Equipment, Ministry of Health of the Republic of Kazakhstan Results: Intravital analysis of the bone density dynamics in the zone of ulna fracture showed a statistically significant 27% increase in bone density 4 weeks after osteotomy of the ulna in the group of animals receiving 4 transplantations (once per week) of the MSC modified with the polymer. The results of intravital observations were confirmed by post-mortem analysis of histological slices of the fracture zone. A study of the dynamics of interstitial distribution of the MSCs showed the presence of transplanted cells in the area of the bone defect for at least one week after local injection of the modified cell. The results of preclinical biosafety studies have shown the absence of acute and chronic polymer toxicity. Conclusion: The data obtained allowed us to conclude that the proposed combined approach, based on the use of cell therapy for MSCs modified with an osteophilic polymer, which has two functional groups - bisphosphonate and hydroxysuccimide, is a safe and an effective way to stimulate reparative osteogenesis in osteoporosis-associated traumatic bone injuries.
Yuliya I. Safarova (Yantsen)1, https://orcid.org/0000-0003-0695-0413 Farkhad S. Olzhayev1, https://orcid.org/0000-0002-1906-6654 Bauyrzhan A. Umbayev1, https://orcid.org/0000-0002-0286-7252 Akmaral S. Yerkebayeva2, https://orcid.org/0000-0002-0395-282X Aisulu S. Karenkina3, https://orcid.org/0000-0002-0782-3099 Ivan V. Kotov3, https://orcid.org/0000-0003-0074-4520 Alan J. Russell4, https://orcid.org/0000-0001-5101-4371 Sholpan N. Askarova1*, https://orcid.org/0000-0001-6161-1671 1 National Laboratory Astana, Nazarbayev University, Nur-Sultan city, Republic of Kazakhstan; 2 School of Sciences and Humanities, Nazarbayev University, Nur-Sultan city, Republic of Kazakhstan; 3 GKP on PHV "Pathological Bureau" akimat Nur-Sultan city, Nur-Sultan city, Republic of Kazakhstan; 4 Institute for Complex Engineering, Carnegie Mellon University, Pittsburgh, USA
1. An S.H., Matsumoto T., Miyajima H., Nakahira A., Kim K.H., Imazato S. Porous zirconia/hydroxyapatite scaffolds for bone reconstruction // Dent Mater. 2012,28: 1221-1231 2. Bone H.G., Hosking D., Devogelaer J.P., Tucci J.R., Emkey R.D., Tonino R.P., et al. Ten years' experience with alendronate for osteoporosis in postmenopausal women // N Engl J Med. 2004,350:1189-1199. 3. Cho S.W., Sun H.J., Yang J.Y., Jung J.Y., An J.H., Cho H.Y., et al. Transplantation of mesenchymal stem cells overexpressing RANK-Fc or CXCR4 prevents bone loss in ovariectomized mice // Mol Ther. 2009,17:1979-1987. 4. Cranney A., Wells G., Willan A., Griffith L., Zytaruk N., Robinson V., et al. Meta-analyses of therapies for postmenopausal osteoporosis. II. Meta-analysis of alendronate for the treatment of postmenopausal women // Endocr Rev. 2002,23:508-516. 5. De Becker A., Riet I.V. Homing and migration of mesenchymal stromal cells: How to improve the efficacy of cell therapy? // World journal of stem cells 2016, 8:73-87. 6. D'Souza S., Murata H., Jose M.V., Askarova S., Yantsen Y., Andersen J.D., et al. Engineering of cell membranes with a bisphosphonate-containing polymer using ATRP synthesis for bone targeting // Biomaterials. 2014,35:9447-9458. 7. Eggenhofer E., Benseler V., Kroemer A., Popp F.C., Geissler E.K., Schlitt H.J., et al. Mesenchymal stem cells are short-lived and do not migrate beyond the lungs after intravenous infusion // Frontiers in immunology 2012,3:297. 8. Egusa H., Sonoyama W., Nishimura M., Atsuta I., Akiyama K. Stem cells in dentistry - Part II: Clinical applications // Journal of prosthodontic research 2012, 56:229-248. 9. Fischer U.M., Harting M.T., Jimenez F., Monzon-Posadas W.O., Xue H., Savitz S.I., et al. Pulmonary passage is a major obstacle for intravenous stem cell delivery: the pulmonary first-pass effect // Stem cells and development. 2009,18:683-692. 10. Gholamrezanezhad A., Mirpour S., Bagheri M., Mohamadnejad M., Alimoghaddam K., Abdolahzadeh L., et al. In vivo tracking of 111In-oxine labeled mesenchymal stem cells following infusion in patients with advanced cirrhosis // Nuclear medicine and biology 2011,38:961-967. 11. Giannoudis P., Tzioupis C., Almalki T., Buckley R. Fracture healing in osteoporotic fractures: is it really different? A basic science perspective // Injury. 2007,38 Suppl 1:S90-99. 12. Guan M., Yao W., Liu R., Lam K.S., Nolta J., Jia J., et al. Directing mesenchymal stem cells to bone to augment bone formation and increase bone mass // Nature medicine. 2012,18:456-462. 13. Hernlund E., Svedbom A., Ivergård M., Compston J., Cooper C., Stenmark J., et al. Osteoporosis in the European Union: medical management, epidemiology and economic burden: A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA) // Archives of Osteoporosis. 2013,8:136. 14. Huang S., Xu L., Zhang Y., Sun Y., Li G. Systemic and Local Administration of Allogeneic Bone Marrow-Derived Mesenchymal Stem Cells Promotes Fracture Healing in Rats // Cell Transplant. 2015,24:2643-2655 15. Ja K. WHO Technical Report. In. University of Sheffield, UK; 2007. pp. 66. 16. James R., Deng M., Laurencin C.T., Kumbar. S.G. Nanocomposites and bone regeneration // Frontiers of Materials Science. 2011,5:342-357. 17. Jeon O.H., Elisseeff J. Orthopedic tissue regeneration: cells, scaffolds, and small molecules // Drug Deliv Transl Res. 2015: 105-20 18. Johnell O., Kanis J.A. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures // Osteoporos Int 2006,17:1726-1733. 19. Kamrani R.S., Mehrpour S.R., Sorbi R., Aghamirsalim M., Farhadi L. Treatment of nonunion of the forearm bones with posterior interosseous bone flap // J Orthop Sci. 2013,18:563-568. 20. Kidd S., Spaeth E., Dembinski J.L., Dietrich M., Watson K., Klopp A., et al. Direct evidence of mesenchymal stem cell tropism for tumor and wounding microenvironments using in vivo bioluminescent imaging // Stem cells. 2009,27:2614-2623. 21. Ma S., Xie N., Li W., Yuan B., Shi Y., Wang Y. Immunobiology of mesenchymal stem cells // Cell death and differentiation. 2014,21:216-225. 22. Nakase T., Fujii M., Myoui A., Tamai N., Hayaishi Y., Ueda T., et al. Use of hydroxyapatite ceramics for treatment of nonunited osseous defect after open fracture of lower limbs // Arch Orthop Trauma Surg. 2009,129:1539-1547. 23. Nystedt J., Anderson H., Tikkanen J., Pietila M., Hirvonen T., Takalo R., et al. Cell surface structures influence lung clearance rate of systemically infused mesenchymal stromal cells // Stem cells 2013,31:317-326. 24. Olzhayev F., Tsoy A., Umbayev B., Askarova S. Cell therapy approach for correction of osteoporosis-associated fractures using adipose-derived mesenchymal stem cells functionalized with osteophilic polymer // Experimental biology and medicine. 2018,77:58-72. 25. Schrepfer S., Deuse T., Reichenspurner H., Fischbein M.P., Robbins R.C., Pelletier M.P. Stem cell transplantation: the lung barrier // Transplantation proceedings. 2007, 39:573-576. 26. Sarkar D., Spencer J.A., Phillips J.A., Zhao W., Schafer S., Spelke D.P., et al. Engineered cell homing // Blood. 2011,118:e184-191. 27. Sasaki M., Abe R., Fujita Y., Ando S., Inokuma D., Shimizu H. Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type // Journal of immunology. 2008,180:2581-2587. 28. Singh J., Onimowo J.O., Khan W.S. Bone marrow derived stem cells in trauma and orthopaedics: a review of the current trend // Curr Stem Cell Res Ther. 2014,10: 37-42 29. Tasso R., Ulivi V., Reverberi D., Lo S.C., Descalzi F., Cancedda R. In vivo implanted bone marrow-derived mesenchymal stem cells trigger a cascade of cellular events leading to the formation of an ectopic bone regenerative niche // Stem Cells Dev. 2013,22: 3178-91 30. Teitelbaum S.L. Stem cells and osteoporosis therapy // Cell Stem Cell. 2010,7:553-554. 31. Wells G., Cranney A., Peterson J., Boucher M., Shea B., Robinson V., et al. Risedronate for the primary and secondary prevention of osteoporotic fractures in postmenopausal women // Cochrane Database Syst Rev. 2008:Cd004523. 32. Yamada Y., Boo J.S., Ozawa R., Nagasaka T., Okazaki Y., Hata K., et al. Bone regeneration following injection of mesenchymal stem cells and fibrin glue with a biodegradable scaffold // J Craniomaxillofac Surg. 2003,31:27-33. 33. Yao W., Lane N.E. Targeted delivery of mesenchymal stem cells to the bone // Bone. 2015,70:62-65. 34. Zhang L., Chan C. Isolation and enrichment of rat mesenchymal stem cells (MSCs) and separation of single-colony derived MSCs. J Vis Exp 2010, 37:1852
Number of Views: 260

Key words:

Category of articles: Original articles

Bibliography link

Safarova (Yantsen) Yu.I., Olzhayev F.S., Umbayev B.A., Yerkebayeva A.S., Karenkina A.S., Kotov I.V., Russell A.J., Askarova Sh.N. Perspective approaches for treatment of low-energy injury bone tissue injuries using bioengineering methods and cell therapy // Nauka i Zdravookhranenie [Science & Healthcare]. 2019, (Vol.21) 5, pp. 68-80.

Авторизируйтесь для отправки комментариев