Introduction: The 2019 worldwide outbreak of coronavirus disease (COVID-19) caused by the new severe acute respiratory syndrome coronavirus SARS-CoV-2 has wreaked havoc on health systems and economies around the world. SARS-CoV-2 infections range from asymptomatic to severe courses of COVID-19 with acute respiratory distress syndrome (ARDS) and death. Risk factors for disease severity include older age, male sex, increased BMI, comorbidities and ethnicity. The impact of the host genetic to the development of infectious diseases, causing susceptibility to a variety of viruses, as well as influencing the course of the disease has been confirmed in numerous studies indicating the existence of candidate genes for predisposition to infections. Objective: Conduct an analysis of literature data to study the impact of host genetics on the susceptibility and severity of the course of coronavirus infection COVID-19. Search strategy: Informational analysis of articles on host genetic factors affecting the severity of the course of coronavirus infection COVID-19 was carried out in the open scientific databases Pubmed and Web of science according to keywords. Results and conclusion: Several common and rare gene variants associated with inflammation and immune response in COVID-19 have been identified. The literature review focuses on research on the impact of host genetics to susceptibility and severity of coronavirus infection COVID-19. We discuss candidate genes that should be investigated further to understand such associations and provide insights relevant to pathogenesis and risk classification. Knowledge of the risk factors for COVID-19 infection is essential to determine the most appropriate measures and a quick response to mitigate the threat of recurrent outbreaks.
Akbota M. Aitkulova1*, Saule E. Rakhimova2, 0000-0002-8245-2400 Ulan A. Kozhamkulov2, 0000-0002-9782-7631 Ulykbek E. Kairov2, 0000-0001-8511-8064 Ruslan N. Kalendar2, 0000-0003-3986-2460 Almagul R. Kushugulova2, 0000-0001-9479-0899 Makhabbat S. Bekbossynova3, 0000-0003-3437-0512 Ainur R. Akilzhanova2, 0000-0001-6161-8355 Dos D. Sarbassov1,2, 0000-0002-6848-1133 1 JSC "Nazarbayev University", Nur-Sultan, Republic of Kazakhstan; 2 PI “National Laboratory Astana”, Nur-Sultan, Republic of Kazakhstan; 3 СJSC “National Scientific Cardiac Surgery Center”, Nur-Sultan, Republic of Kazakhstan.
1. Abel L., Alcaïs A., Schurr E. The dissection of complex susceptibility to infectious disease: bacterial, viral and parasitic infections // Curr. Opin. Immunol. 2014. Vol.30. P.72-8. 2. Ahmed-Hassan H., Sisson B., Shukla R.K., Wijewantha Y., Funderburg N.T., Li Z. Liyanage N.P. M. Innate Immune Responses to Highly Pathogenic Coronaviruses and Other Significant Respiratory Viral Infections // Frontiers in Immunology. 2020. Vol. 11. doi:10.3389/fimmu.2020.01979. 3. Asselta R., Paraboschi E.M., Mantovani A., Duga S. ACE2 and TMPRSS2 variants and expression as candidates to sex and country differences in COVID‐19 severity in Italy // medRxiv. 2020. doi: 10.1101/2020.03.30.20047878. 4. Becerra‐Flores M., Cardozo T. SARS‐CoV‐2 viral spike G614 mutation exhibits higher case fatality rate // Int J Clin Pract. 2020. Vol.7. doi: 10.1111/ijcp.13525. 5. Belouzard S., Chu V.C., Whittaker G.R. Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites // Proc. Natl. Acad. Sci. U.S.A. 2009. Vol. 106. P. 5871–5876. doi:10.1073/pnas.0809524106. 6. Benetti E., Tita R., Spiga O., et al. ACE2 variants underlie interindividual variability and susceptibility to COVID‐19 in Italian population // medRxiv. - 2020. doi:10.1101/2020.04.03.20047977. 7. Brest P., Refae S., Mograbi B., Hofman P., Milano G. Host Polymorphisms May Impact SARS-CoV-2 Infectivity // Trends in Genetics. 2020. doi:10.1016/j.tig.2020.08.003. 8. Casanova J.L., Su H.C., Effort C.H.G. A global effort to define the human genetics of protective immunity to SARS-CoV-2 infection // Cell. 2020. Vol.181. P.1194–99. 9. COVID-19 Host Genetics Initiative. The COVID-19 Host Genetics Initiative, a global initiative to elucidate the role of host genetic factors in susceptibility and severity of the SARS-CoV-2 virus pandemic // Eur. J. Hum. Genet. 2020. Vol. 28. P. 715–718. 10. Costa-Pereira A.P., Williams T.M., Strobl B., Watling D., Briscoe J., Kerr I.M. The Antiviral Response to Gamma Interferon // J. Virol. 2002. Vol. 76. P. 9060–8. 11. Forster P., Forster L., Renfrew C., Forster M. Phylogenetic network analysis of SARS‐CoV‐2 genomes // Proc Natl Acad Sci U S A. 2020. Vol. 117. P.9241‐9243. 12. Gattinger P., Borochova K., Dorofeeva Y., Henning R., Kiss R., Kratzer B., et al. Antibodies in serum of convalescent patients following mild COVID-19 do not always prevent virus-receptor binding // Allergy. 2020. doi: 10.1111/all.14523. 13. Ge D., Fellay J., Thompson A.J., et al. Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance // Nature. 2009. Vol. 461. P. 399-401. 14. Heurich A. TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein // J. Virol. 2014. Vol.88. P.1293–1307. 15. Iturrieta-Zuazo I., Rita C.G., García-Soidán A., de Malet Pintos-Fonseca A., Alonso-Alarcón N., Pariente-Rodríguez R. et al. Possible role of HLA class-I genotype in SARS-CoV-2 infection and progression: a pilot study in a cohort of Covid-19 Spanish patients // Clin Immunol. 2020. Vol. 219. doi: 10.1016/j.clim.2020.108572. 16. Jia Y., Shen G., Zhang Y., et al. Analysis of the mutation dynamics of SARS‐CoV‐2 reveals the spread history and emergence of RBD mutant with lower ACE2 binding affinity // bioRxiv. - 2020. doi:10.1101/2020.04.09.034942. 17. Jostins L., Ripke S., Weersma R.K., et al. Host-microbe interactions have shaped the genetic architecture of inflamma- tory bowel disease // Nature. 2012. Vol.491. P. 119-24. 18. Keicho N., Itoyama S., Kashiwase K. Association of human leukocyte antigen class II alleles with severe acute respiratory syndrome in the Vietnamese population // Hum. Immunol. 2009. Vol. 70. P. 527–531. doi:10.1016/j.humimm.2009.05.006. 19. Kirtipal N., Bharadwaj S. Interleukin 6 polymorphisms as an indicator of COVID‐19 severity in humans // J Biomol Struct Dyn. 2020. P. 1‐4. doi:10.1080/07391102.2020. 20. Kratzer B., Trapin D., Ettel P., Körmöczi U., Rottal A., Tuppy F., et al. Immunological imprint of COVID-19 on human peripheral blood leukocyte populations // Allergy. 2020. doi: 10.1111/all.14647. 21. Lau Y.L., Peiris J.S. Association of cytokine and chemokine gene polymorphisms with severe acute respiratory syndrome // Hong Kong Med J. 2009. Vol. 15 (Suppl 2). P.43‐46. 22. Li G., Chen X., Xu A. Profile of specific antibodies to the SARS-associated coronavirus // N. Engl. J. Med. 2003. Vol. 349. P. 508–509. doi:10.1056/NEJM200307313490520. 23. Li X., Geng M., Peng Y., Meng L., Lu S. Molecular immune pathogenesis and diagnosis of COVID-19 // Journal of Pharmaceutical Analysis. 2020. Vol.10. P.102–108. 24. Liu J., Wu P., Gao F. Novel immunodominant peptide presentation strategy: a featured HLA-A∗2402-restricted cytotoxic T-lymphocyte epitope stabilized by intrachain hydrogen bonds from severe acute respiratory syndrome coronavirus nucleocapsid protein // J. Virol. 2010. Vol. 84. P. 11849–11857. doi:10.1128/JVI.01464-10. 25. Liu D., Cui P., Zeng S. et al. Risk factors for developing into critical COVID-19 patients in Wuhan, China: a multicenter, retrospective, cohort study // E Clinical Medicine. 2020. Vol.25 26. Monreal E., Sainz de la Maza S., Fernández-Velasco J.I., Natera-Villalba E., Rita C.G., Villar L.M. The Impact of Immunosuppression and Autoimmune Disease on Severe Outcomes in Patients Hospitalized with COVID-19 // Journal of Clinical Immunology. 2020. Vol.41. P. 315–323. doi:10.1007/s10875-020-00927-y. 27. Nguyen A., David J.K., Maden S.K., et al. Human leukocyte antigen susceptibility map for SARS‐CoV‐2 // J Virol. 2020. Vol. 94. P. e00510–20. 28. Niemeyer D., Zillinger T., Muth D. Middle East respiratory syndrome coronavirus accessory protein 4a is a type I interferon antagonist // J. Virol. 2013. Vol. 87. P.12489–12495. doi:10.1128/JVI.01845-13. 29. Ou J., Zhou Z., Dai R., et al. Emergence of RBD mutations in circulating SARS‐CoV‐2 strains enhancing the structural stability and human ACE2 receptor affinity of the spike protein // bioRxiv. - 2020. doi:10.1101/2020.03.15.991844. 30. Pachetti M., Marini B., Benedetti F., et al. Emerging SARS‐CoV‐2 mutation hot spots include a novel RNA‐dependent‐RNA polymerase variant // J Transl Med. 2020. Vol.18. P.179. 31. Perlman S.J. Netland Coronaviruses post-SARS: update on replication and pathogenesis // Nat. Rev. Microbiol. 2009. Vol.7. P.439–450. doi:10.1038/nrmicro2147. 32. Picard C., Gaspar H.B., Al-Herz W., et al. International Union of Immunological Societies: 2017 Primary Immunodeficiency Diseases Committee Report on Inborn Errors of Immunity // J Clin Immunol. 2018. Vol. 38. P. 96–128.doi: 10.1007/s10875-017-0464-9. 33. Pinto B.G., Oliveira A.E., Singh Y., et al. ACE2 expression is increased in the lungs of patients with comorbidities associated with severe COVID‐19 // medRxiv. 2020. doi:10.1101/2020.03.21.20040261. 34. Pisanti S., Deelen J., Gallina A.M., Caputo M., Citro M., Abate M., et al. Correlation of the two most frequent HLA haplotypes in the Italian population to the differential regional incidence of Covid-19 // J Transl Med. 2020. Vol.18. рр.352. doi: 10.1186/s12967-020-02515-5. 35. Puja Mehta, McAuley Daniel F., Michael Brown, Emilie Sanchez, Tat-tersall Rachel S., Manson Jessica J. COVID-16: consider cytokine storm syndromes and immunosuppression // Lancet. 2020. Vol. 395. P.1033–034. 36. Pya Y.V., Bekbossynov S.T., Bekbossynova M.S., Medressova A.T., Andossova S.A., Dzhetybayeva S.K., Novikova S.P. New mechanical circulatory support devices as an alternative to the heart transplantation in end-stage heart failure patients // Clinical and Experimental Surgery. 2017. Vol. 5. P. 7-14. 37. Ruan Q., Yang K., Wang W., Jiang L., Song J. Clinical predictors of mortality due to COVID‐19 based on an analysis of data of 150 patients from Wuhan, China // Intensive Care Med. 2020. Vol 46. P. 846‐848. 38. Russo R., Andolfo I., Lasorsa V.A., Iolascon A., Capasso M. Genetic analysis of the novel SARS‐CoV‐2 host receptor TMPRSS2 in different populations // bioRxiv. 2020. doi:10.1101/2020.04.23.057190. 39. Sainz B., Mossel E.C., Peters C.J., Garry R.F. Interferon-beta and interferon-gamma synergistically inhibit the replication of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) // Virology. 2004. Vol. 329. P. 11–7. 40. Sanjuan R., Domingo‐Calap P. Mechanisms of viral mutation // Cell Mol Life Sci. 2016. Vol. 73. P.4433‐4448. 41. Severe Covid-19 GWAS Group et al. Genomewide Association Study of Severe Covid-19 with Respiratory Failure // N. Engl. J. Med. 2020. Vol.383. P. 1522–1534. 42. Shang J., Ye G., Shi K. Structural basis of receptor recognition by SARS-CoV-2 // Nature. 2020. Vol. 581. P. 221–224. 43. Shkurnikov M., Nersisyan S., Jankevic T., Galatenko A., Gordeev I., Vechorko V., Tonevitsky A. Association of HLA Class I Genotypes with Severity of Coronavirus Disease-19 // Frontiers in Immunology. 2021. Vol. 12. P. 1-12. 44. Stawiski E.W., Diwanji D., Suryamohan K., et al. Human ACE2 receptor polymorphisms predict SARS‐CoV‐2 susceptibility // bioRxiv. - 2020. doi: 10.1101/2020.04.07.024752. 45. The Nextstrain Team. Genomic epidemiology of novel coronavirus ‐ Global sampling. 2020. Accessed 11 Oct 2021. 46. Thye T., Owusu-Dabo E., Vannberg F.O., et al. Common variants at 11p13 are associated with susceptibility to tubercu- losis // Nat Genet. 2012. Vol.44. P. 257-9. 47. Ulhaq Z.S., Soraya G.V. Anti‐IL‐6 Receptor Antibody Treatment for Severe COV ID‐19 and the Potential Implication of IL‐6 Gene Polymorphisms in Novel Coronavirus Pneumonia // Medicina Clinica. 2020. doi: 10.1016/j.medcli.2020.07.002. 48. Wang H., Yang P., Liu K. SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway // Cell Res. 2008. Vol.18. P.290–301. doi:10.1038/cr.2008.15. 49. Wit E., van Doremalen N., Falzarano D. SARS and MERS: recent insights into emerging coronaviruses // Nat. Rev. Microbiol. 2016. Vol.14. P. 523–534. doi:10.1038/nrmicro.2016.81. 50. World Health Organization. Novel coronavirus – China. 2020. (Accessed 11 Oct 2021). 51. Xiao G. et al. CXCL16/CXCR6 chemokine signaling mediates breast cancer progression by pERK1/2-dependent mechanisms // Oncotarget. 2015. Vol. 6. P. 14165–14178. 52. Xu Z., Shi L., Wang Y. Pathological findings of COVID-19 associated with acute respiratory distress syndrome // Lancet Resp. Med. 2020. doi: 10.1016/S2213-2600(20)30076-X. 53. Yegorov S., Goremykina M., Ivanova R., Good S.V., Babenko D., Shevtsov A., Zhunussov Y. Epidemiology, clinical characteristics, and virologic features of COVID-19 patients in Kazakhstan: A nation-wide retrospective cohort study // The Lancet Regional Health. 2021. doi:10.1016/j.lanepe.2021.100096. 54. Zhang F., Liu H., Chen S., et al. Identification of two new loci at IL23R and RAB32 that influence susceptibility to leprosy // Nat Genet. 2011. Vol.43. P. 1247-51. 55. Zhao J., Li K., Wohlford-Lenane C. Rapid generation of a mouse model for Middle East respiratory syndrome // Proc. Natl. Acad. Sci. U.S.A. 2014. Vol. 111. P. 4970–4975.
Number of Views: 146

Key words:

Bibliography link

Aitkulova A.M., Rakhimova S.E., Kozhamkulov U.A., Kairov U.E., Kalendar R.N., Kushugulova A.R., Bekbossynova M.S., Akilzhanova A.R., Sarbassov D.D. Host genetic factors determining COVID-19 susceptibility and severity // Nauka i Zdravookhranenie [Science & Healthcare]. 2021, (Vol.23) 6, pp. 15-25. doi 10.34689/SH.2021.23.6.002

Авторизируйтесь для отправки комментариев