Online ISSN: 3007-0244,
Print ISSN:  2410-4280
The aim of our study is to examine the effect of obstructive sleep apnea syndrome (OSAS) on the cognitive functions of the brain in patients with type 2 diabetes. Materials and methods. The study involved patients with clinically and laboratory proven type 2 diabetes mellitus. The cases group (Group 1) included patients with OSAS. The control group (Group 2) included patients without OSAS. Sleep duration and quality were assessed using respiratory monitoring. OSAS was screened using a portable night monitor. Cognitive assessment is performed using the Montreal Cognitive Test (MoCA). Three MoCA subscales were analyzed: visual-constructive function, executive function, and orienting function. Results. A total of 94 patients (58 women and 36 men, 61.7% vs 38.3%) took part in the study. The age ranged from 45 to 59 years. The MoCA subscales - visual-spatial and executive functions, Clock and Orientation, were lower in the main group compared to controls (p<0.05). In the control group, significant correlation between the MoCA indicator and BMI (r=0,39; p=0,015), waist circumference (r=0,48; p=0,002), neck circumference (positive) (r=0,33; p=0,040) and Hba1c (negative) was found. In the main group, 32.7% of participants had MoCA score below 26, in the control group - only 67.3% Conclusion. Lower sleep efficiency is associated with lower cognitive function in patients with abnormal glucose tolerance. Whether sleep optimization may improve cognitive function in these patients should be explored.
Карлыгаш А. Шиналиева1, Aсемгуль С. Касенова1, Мурат Б. Жумабаев2, 0000-0002-2405-4447 Майра Г. Абдрахманова1, Айнур О. Бекенова1, Салтанат Е. Мадирова1, 1 НАО "Медицинский университет Астана", Кафедра Неврологии г. Астана, Республика Казахстан; 2 НАО "Медицинский университет Астана", Кафедра Детской анестезиологии, интенсивной терапии и скорой неотложной помощи, г. Астана, Республика Казахстан.
1. Boyle J.P. et al. Projection of the year 2050 burden of diabetes in the US adult population: Dynamic modeling of incidence, mortality, and prediabetes prevalence // Population Health Metrics. 2010. № 1 (8). C. 29. 2. Briançon-Marjollet A. et al. The impact of sleep disorders on glucose metabolism: Endocrine and molecular mechanisms // Diabetology and Metabolic Syndrome. 2015. Т. 7. № 1. pp. 7-16. 3. Bucks R.S. et al. Reviewing the relationship between OSA and cognition: Where do we go from here? // Respirology. 2017. Т. 22. №7. C. 1253–1261. 4. Bubu O.M. et al. Sleep, cognitive impairment, and Alzheimer’s disease: a systematic review and meta-analysis // Sleep. 2017. № 40 (1). P.1-18. 5. Bilgin C. et al. Use of a portable monitoring device (Somnocheck Micro) for the investigation and diagnosis of obstructive sleep apnoea in comparison with polysomnography // Pak J Med Sci. 2016 Mar-Apr. 32(2). С.471-5. 6. Dedov I.I., Dedov I.I., Shestakova M.V., Mayorov A.Yu. et al. Standards of specialized diabetes care // Edited by 10th edition // Diabetes mellitus. 2022. № 1S (24). C. 1–148. 7. Holingue C. et al. Disturbed sleep and diabetes: A potential nexus of dementia risk // Metabolism: Clinical and Experimental. 2018. № 3 (84). C. 85–93. 8. Isaac Almendros et al. Sleep apnoea, insulin resistance and diabetes: the first step is in the fat // European Respiratory Journal. 2017. 49(4). C. 4–8. 9. Maggi G. et al. Sleep Disorders and Cognitive Dysfunctions in Parkinson’s Disease: A Meta-Analytic Study // Neuropsychology Review. 2021. Т. 31. №4. C. 643–682. 10. Malhotra R.K. et al. Polysomnography for Obstructive Sleep Apnea Should Include Arousal-Based Scoring: An American Academy of Sleep Medicine Position Statement // Journal of Clinical Sleep Medicine. 2018. №7 (14). C. 1245–1247. 11. Muraki I., Wada H., Tanigawa T. Sleep apnea and type 2 diabetes // Journal of Diabetes Investigation. 2018. Т. 9. № 5. C. 991–997. 12. Nasreddine Z.S. et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment // Journal of the American Geriatrics Society. 2005. Vol. 53, № 4. P. 695-699. 13. Osorio R.S. et al. Sleep-disordered breathing advances cognitive decline in the elderly // Neurology, 2015. Vol. 84, №19. C.1964-71 14. Punjabi N.M. et al. Sleep-disordered Breathing and Insulin Resistance in Middle-aged and Overweight Men // Am J Respir Crit Care Med. 2002. (165). C. 677–682. 15. Reichmuth K.J. et al. Association of sleep apnea and type II diabetes: A population-based study // American Journal of Respiratory and Critical Care Medicine. 2005. №12 (172). C. 1590–1595. 16. Reutrakul S. et al. Obstructive Sleep Apnea and Diabetes: A State of the Art Review // Chest. 2017. Т. 152. № 5. C. 1070–1086. 17. Seidell J.C. et al. The global burden of obesity and the challenges of prevention // Annals of Nutrition and Metabolism. 2015. (66). C. 7–12. 18. Sommermeyer D. et al. Detection of sleep disordered breathing and its central/obstructive character using nasal cannula and finger pulse oximeter // Journal of Clinical Sleep Medicine. 2012. № 5 (8). C. 527–533. 19. Song X. et al. Altered resting-state hippocampal and caudate functional networks in patients with obstructive sleep apnea // Brain and Behavior. 2018. №6(8). pp.7-13. 20. Tyagi A. et al. Targeting Insulin Resistance to Treat Cognitive Dysfunction // Molecular Neurobiology. 2021. Т.58. №6. C. 2672–2691.
Number of Views: 95

Key words:

Category of articles: Original articles

Bibliography link

Shinalieva K.A., Kasenova A.S., Zhumabayev M.B., Abdrakhmanova M.G., Bekenova A.O., Madirova S.E. Obstructive sleep apnea and cognitive function with type 2 diabetes mellitus: a hospital-based case-control study // Nauka i Zdravookhranenie [Science & Healthcare]. 2023, (Vol.25) 1, pp. 94-99. doi 10.34689/SH.2023.25.1.012 Шиналиева К.А., Касенова А.С., Жумабаев М.Б., Абдрахманова М.Г., Бекенова А.О., Мадирова С.Е. Синдром обструктивного апноэ сна и когнитивной функции при сахарном диабете 2 типа: исследование случай-контроль // Наука и Здравоохранение. 2023. 1(Т.25). С. 94-99. doi 10.34689/SH.2023.25.1.012

Авторизируйтесь для отправки комментариев