STUDY OF THE GUT MICROBIOTA COMPOSITION ROLE IN THE CONTEXT OF CHRONIC HEART FAILURE DEVELOPMENT: REVIEW OF CURRENT DATA
Background. Chronic heart failure (CHF) is a global health issue with high mortality rates. According to statistical data, in Kazakhstan, 4.7% of the population suffers from CHF, which amounts to approximately 320,000 people. In the United States, 6.7 million individuals are affected, with projections rising to 8.5 million by 2030. Despite advancements in treatment, mortality rates remain high. Recent studies highlight the role of gut microbiota in systemic inflammation, a key factor in cardiovascular diseases. Exploring the gut microbiota offers a novel perspective for understanding CHF pathogenesis and potential therapeutic interventions.
Aim. The review aims to explore the role of gut microbiota in the development and progression of CHF and examine new methods to improve the clinical status of patients through gut microbiota modulation.
Search strategy. A literature review was conducted using PubMed, Medline, Cochrane Central register of Controlled Trials database, Web of Science, Scopus, https://elibrary.ru, and Google Scholar over the past 10 years, providing information on the role of the gut microbiota in the development and progression of CHF. The review includes works published in Russian and English
Results. Disruption of the intestinal barrier allows endotoxins and microbial metabolites to enter systemic circulation, triggering systemic inflammation and endothelial dysfunction, exacerbating CHF. Gut hypoperfusion and increased permeability further contribute to the disease's progression. Microbial metabolites, such as trimethylamine-N-oxide (TMAO) and short-chain fatty acids (SCFAs), influence systemic inflammation. Elevated TMAO levels are linked to cardiovascular events, while SCFAs have protective effects but are reduced in CHF patients. Gut dysbiosis is prevalent in CHF, marked by altered microbiota composition, including decreased beneficial bacteria and increased pathogenic species. These changes correlate with systemic inflammation and disease severity.
Conclusions. The gut microbiota significantly impacts CHF pathogenesis through its influence on systemic inflammation and metabolic pathways. Modulating gut microbiota presents promising therapeutic opportunities, including dietary adjustments, probiotics, prebiotics, and fecal microbiota transplantation. Further research is essential to optimize interventions and explore the gut-heart axis's role in CHF progression and comorbidities.
Bekbosynova Makhabbat, Deputy Chairperson of the Board, Corporate Fund "University Medical Center," Astana, Kazakhstan. E-mail: m.bekbosynova@umc.org.kz. ORCID ID: https://orcid.org/0000-0003-2834-617X, Tel.: +7(701) 500-77-07
Jetybayeva Saltanat, Cardiologist, Corporate Fund "University Medical Center," Astana, Kazakhstan. E-mail: s.jetybayeva@umc.org.kz. ORCID ID: https://orcid.org/0000-0003-3442-3223, Tel.: +7(701) 965-92-65.
Aipov Baurzhan, Cardiology Resident, Corporate Fund "University Medical Center," Astana, Kazakhstan. E-mail: b.aipov@umc.org.kz. ORCID ID: https://orcid.org/0000-0003-2124-0065, Tel.: +7(708) 387-84-18.
Nurlan Kassiyet, Cardiology Resident, Corporate Fund "University Medical Center," Astana, Kazakhstan. E-mail: kasiet.nurlan@umc.org.kz. ORCID ID: https://orcid.org/0000-0007-7389-2811, Tel.: +7(708) 170-70-15.
Sailybaeva Aliya, Director of the Science Department, Corporate Fund "University Medical Center," Astana, Kazakhstan. E-mail: s.aliya@umc.org.kz. ORCID ID: https://orcid.org/0000-0002-1489-3837, Tel.: +7(701) 795-17-76.
Taukelova Ainur, Cardiologist, Corporate Fund "University Medical Center," Astana, Kazakhstan. E-mail: a.tauekelova@umc.org.kz. ORCID ID: https://orcid.org/0000-0002-4237-9835, Tel.: +7(701) 385-78-81.
Laiskanov Islambek, Cardiologist, Corporate Fund "University Medical Center," Astana, Kazakhstan. E-mail: i.laiskanov@umc.org.kz. ORCID ID: https://orcid.org/0009-0001-6406-3209, Tel.: +7(702) 234-57-97.
Aldanysh Zhumazhan, Cardiology Resident, Corporate Fund "University Medical Center," Astana, Kazakhstan. E-mail: zhumazhan_aldany@mail.ru. ORCID ID: https://orcid.org/0009-0000-9451-3867, Tel.: +7(701) 151-03-75.
Kushugulova Almagul, Lead Researcher, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan. E-mail: akushugulova@nu.edu.kz. ORCID ID: https://orcid.org/0000-0001-9479-0899, Tel.: +7(777) 772-78-13.
1. Баширов А.У. Эпидемиология хронической сердечной недостаточности в Казахстане и других странах. Ульяновский медико-биологический журнал. 2024. Т.3. С.17-27. DOI:10.34014/2227-1848-2024-3-17-27
2. Демидова Т.Ю., Лобанова К.Г., Ойноткинова О.С. Микробиота кишечника — фактор риска ожирения и сахарного диабета 2 типа. Тер Арх. 2020. 92(10):97-104. doi:10.26442/00403660.2020.10.000778
3. Фадеева М.В., Схиртладзе М.Р., Зольникова О.Ю., Ивашкин В.Т. Микробиота кишечника в патогенезе хронической сердечной недостаточности. Молекулярная медицина. 2022. 20(2):11-18. doi:10.29296/24999490-2022-02-02
4. Arboleya S., Binetti A., Salazar N., et al. Establishment and development of intestinal microbiota in preterm neonates. FEMS Microbiol Ecol. 2012. 79(3):763-772. doi:10.1111/j.1574-6941.2011.01261.x
5. Arrieta M.C., Stiemsma L.T., Dimitriu P.A., et al. Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci Transl Med. 2015. 7(307). doi:10.1126/scitranslmed.aab2271
6. Arutyunov G.P., Kostyukevich O.I., Serov R.A., Rylova N.V., Bylova N.A. Collagen accumulation and dysfunctional mucosal barrier of the small intestine in patients with chronic heart failure. Int J Cardiol. 2008. 125(2):240-245. doi:10.1016/j.ijcard.2007.11.103
7. Avlas O., Fallach R., Shainberg A., Porat E., Hochhauser E. Toll-Like Receptor 4 Stimulation Initiates an Inflammatory Response That Decreases Cardiomyocyte Contractility. Antioxid Redox Signal. 2011. 15(7):1895-1909. doi:10.1089/ars.2010.3728
8. Bartolomaeus H., McParland V., Wilck N. Gut-heart axis : How gut bacteria influence cardiovascular diseases. Herz. 2020. 45(2):134-141. doi:10.1007/s00059-020-04897-0
9. Benjamin E.J., Muntner P., Alonso A., et al. Heart Disease and Stroke Statistics - 2019 Update: A Report From the American Heart Association. Circulation. 2019. 139(10). doi:10.1161/CIR.0000000000000659
10. Callender C., Attaye I., Nieuwdorp M. The Interaction between the Gut Microbiome and Bile Acids in Cardiometabolic Diseases. Metabolites. 2022. 12(1):65. doi:10.3390/metabo12010065
11. Chambers E.S., Preston T., Frost G., Morrison D.J. Role of Gut Microbiota-Generated Short-Chain Fatty Acids in Metabolic and Cardiovascular Health. Curr Nutr Rep. 2018. 7(4):198-206. doi:10.1007/s13668-018-0248-8.
12. Chen M.L., Zhu X.H., Ran L., Lang H.D., Yi L., Mi M.T. Trimethylamine-N-Oxide Induces Vascular Inflammation by Activating the NLRP3 Inflammasome Through the SIRT3-SOD2-mtROS Signaling Pathway. J Am Heart Assoc. 2017 Sep 4;6(9):e006347. doi: 10.1161/JAHA.117.006347. Erratum in: J Am Heart Assoc. 2017 Nov 8;6(11):e002238. doi: 10.1161/JAHA.117.002238. PMID: 28871042; PMCID: PMC5634285.
13. Cho J.H. Sudden Death and Ventricular Arrhythmias in Heart Failure With Preserved Ejection Fraction. Korean Circ J. 2022. 52(4):251. doi:10.4070/kcj.2021.0420.
14. Cui X., Ye L., Li J. et al. Metagenomic and metabolomic analyses unveil dysbiosis of gut microbiota in chronic heart failure patients. Sci Rep. 2018. 8(1):635. doi:10.1038/s41598-017-18756-2
15. Di Tommaso N., Gasbarrini A., Ponziani F.R. Intestinal Barrier in Human Health and Disease. Int J Environ Res Public Health. 2021. 18(23):12836. doi:10.3390/ijerph182312836
16. Francisqueti-Ferron F.V., Nakandakare-Maia E.T., Siqueira J.S., et al. The role of gut dysbiosis-associated inflammation in heart failure. Rev Assoc Med Bras. 2022, 68(8):1120-1124. doi:10.1590/1806-9282.20220197
17. Gholizadeh P., Mahallei M., Pormohammad A., et al. Microbial balance in the intestinal microbiota and its association with diabetes, obesity and allergic disease. Microb Pathog. 2019. 127:48-55. doi:10.1016/j.micpath.2018.11.031
18. Gottlieb K., Wacher V., Sliman J., Pimentel M. Review article: inhibition of methanogenic archaea by statins as a targeted management strategy for constipation and related disorders. Aliment Pharmacol Ther. 2016. 43(2):197-212. doi:10.1111/apt.13469
19. Green J.E., Davis J.A., Berk M., Hair C., Loughman A., Castle D., Athan E., Nierenberg A.A., Cryan J.F., Jacka F. et al. Efficacy and safety of fecal microbiota transplantation for the treatment of diseases other than Clostridium difficile infection: a systematic review and meta-analysis. Gut Microbes. 2020. 12(1):1–25. doi: 10.1080/19490976.2020.1854640.
20. Hayashi T., Yamashita T., Watanabe H. et al. Gut Microbiome and Plasma Microbiome-Related Metabolites in Patients With Decompensated and Compensated Heart Failure. Circulation Journal. 2018. 83(1):182-192. doi:10.1253/circj.CJ-18-0468
21. Haydock P.M., Flett A.S. Management of heart failure with reduced ejection fraction. Heart. 2022. 108(19):1571-1579. doi:10.1136/heartjnl-2020-318811
22. Heianza Y., Ma W., Manson J.E., Rexrode K.M., Qi L. Gut Microbiota Metabolites and Risk of Major Adverse Cardiovascular Disease Events and Death: A Systematic Review and Meta‐Analysis of Prospective Studies. J Am Heart Assoc. 2017. 6(7). doi:10.1161/JAHA.116.004947
23. Hu X., Xu C., Zhou X. et al. WITHDRAWN: Sodium butyrate protects against myocardial ischemia and reperfusion injury by inhibiting high mobility group box 1 protein in rats. Biomedicine & Pharmacotherapy. Published online September 2010. doi:10.1016/j.biopha.2010.09.005
24. Huang F., Wu X. Brain Neurotransmitter Modulation by Gut Microbiota in Anxiety and Depression. Front Cell Dev Biol. 2021 Mar 11;9:649103. doi: 10.3389/fcell.2021.649103. PMID: 33777957; PMCID: PMC7991717.]
25. Huang J., Lin Y., Ding X., Lin S., Li X., Yan W., Chen M. Alteration of the gut microbiome in patients with heart failure: A systematic review and meta-analysis. Microb Pathog. 2024 Jul;192:106647. doi: 10.1016/j.micpath.2024.106647. Epub 2024 May 23. PMID: 38788811.
26. Huang Z., Mei X., Jiang Y., Chen T., Zhou Y. Gut Microbiota in Heart Failure Patients With Preserved Ejection Fraction (GUMPTION Study). Front Cardiovasc Med. 2022. 8. doi:10.3389/fcvm.2021.803744
27. Inamdar A.A., Inamdar A.C. Heart failure: Diagnosis, management and utilization. J Clin Med. 2016. 5(7). doi:10.3390/jcm5070062.
28. Jandhyala S.M. Role of the normal gut microbiota. World J Gastroenterol. 2015. 21(29):8787. doi:10.3748/wjg.v21.i29.8787
29. Jia Q., Li H., Zhou H., Zhang X., Zhang A., Xie Y., Li Y., Lv S., Zhang J. Role and Effective Therapeutic Target of Gut Microbiota in Heart Failure. Cardiovascular Therapeutics, 2019, 1–10. https://doi.org/10.1155/2019/5164298
30. Jia Q., Wang L., Zhang X., et al. Prevention and treatment of chronic heart failure through traditional Chinese medicine: Role of the gut microbiota. Pharmacol Res. 2020. 151:104552. doi:10.1016/j.phrs.2019.104552
31. Kamo T., Akazawa H., Suda W., et al. Dysbiosis and compositional alterations with aging in the gut microbiota of patients with heart failure. PLoS One. 2017. 12(3):e0174099. doi:10.1371/journal.pone.0174099
32. Kelly J.R., Minuto C., Cryan J.F., Clarke G., Dinan T.G. Cross Talk: The Microbiota and Neurodevelopmental Disorders. Front Neurosci. 2017. 11. doi:10.3389/fnins.2017.00490
33. Kitai T., Kirsop J., Tang W.H. Exploring the Microbiome in Heart Failure. Curr Heart Fail Rep. 2016 Apr. 13(2):103-9. doi: 10.1007/s11897-016-0285-9. PMID: 26886380; PMCID: PMC4791185.
34. Kumar A., Pramanik J., Goyal N., et al. Gut Microbiota in Anxiety and Depression: Unveiling the Relationships and Management Options. Pharmaceuticals. 2023.16(4):565. doi:10.3390/ph16040565
35. Lauritano E.C., Valenza V., Sparano L. et al. Small intestinal bacterial overgrowth and intestinal permeability. Scand J Gastroenterol. 2010. 45(9):1131-1132. doi:10.3109/00365521.2010.485325
36. Lee H.Y., Lim S., Park S. Role of Inflammation in Arterial Calcification. Korean Circ J. 2021. 51(2):114. doi:10.4070/kcj.2020.0517
37. Li W., Huang A., Zhu H., Liu X., Huang X., Huang Y., Cai X., Lu J., Huang Y. Gut microbiota-derived trimethylamine N-oxide is associated with poor prognosis in patients with heart failure. Med J Aust. 2020 Oct;213(8):374-379. doi: 10.5694/mja2.50781. Epub 2020 Sep 22. PMID: 32959366.
38. Li X, Geng J, Zhao J, Ni Q, Zhao C, Zheng Y, Chen X, Wang L. Trimethylamine N-Oxide Exacerbates Cardiac Fibrosis via Activating the NLRP3 Inflammasome. Front Physiol. 2019 Jul 9.10:866. doi: 10.3389/fphys.2019.00866. PMID: 31354519. PMCID: PMC6634262.
39. Li X.S., Obeid S., Klingenberg R. et al. Gut microbiota-dependent trimethylamine N-oxide in acute coronary syndromes: a prognostic marker for incident cardiovascular events beyond traditional risk factors. Eur Heart J. Published online January 11, 2017:ehw 582. doi:10.1093/eurheartj/ehw582
40. Li Z, Wu Z, Yan J, Liu H, Liu Q, Deng Y, Ou C, Chen M. Gut microbe-derived metabolite trimethylamine N-oxide induces cardiac hypertrophy and fibrosis. Lab Invest. 2019 Mar;99(3):346-357. doi: 10.1038/s41374-018-0091-y. Epub 2018 Aug 1. PMID: 30068915.
41. Lu J., Synowiec S., Lu L., et al. Microbiota influence the development of the brain and behaviors in C57BL/6J mice. PLoS One. 2018. 13(8):e0201829. doi:10.1371/journal.pone.0201829
42. Mahenthiran A., Wilcox J., Tang W.H.W. Heart Failure: a Punch from the Gut. Curr Heart Fail Rep. 2024 Apr. 21(2):73-80. doi: 10.1007/s11897-024-00648-y. Epub 2024 Feb 1. PMID: 38300390, PMCID: PMC10924029.
43. Maier L., Pruteanu M., Kuhn M., et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature. 2018. 555(7698):623-628. doi:10.1038/nature25979
44. Makrecka-Kuka M, Volska K, Antone U, Vilskersts R, Grinberga S, Bandere D, Liepinsh E, Dambrova M. Trimethylamine N-oxide impairs pyruvate and fatty acid oxidation in cardiac mitochondria. Toxicol Lett. 2017 Feb 5;267:32-38. doi: 10.1016/j.toxlet.2016.12.017. Epub 2016 Dec 31. PMID: 28049038.
45. Mamic P., Chaikijurajai T., Tang W.H.W. Gut microbiome - A potential mediator of pathogenesis in heart failure and its comorbidities: State-of-the-art review. J Mol Cell Cardiol. 2021 Mar. 152:105-117. doi: 10.1016/j.yjmcc.2020.12.001. Epub 2020 Dec 9. PMID: 33307092; PMCID: PMC7981261.
46. Mamic P., Snyder M., Tang W.H.W. Gut Microbiome-Based Management of Patients With Heart Failure: JACC Review Topic of the Week. J Am Coll Cardiol. 2023 May 2. 81(17):1729-1739. doi: 10.1016/j.jacc.2023.02.045. PMID: 37100490.
47. Martel J., Chang S.H., Ko Y.F., Hwang T.L., Young J.D., Ojcius D.M. Gut barrier disruption and chronic disease. Trends in Endocrinology & Metabolism. 2022. 33(4):247-265.
48. Masenga S.K., Povia J.P., Lwiindi P.C., Kirabo A. Recent Advances in Microbiota-Associated Metabolites in Heart Failure. Biomedicines. 2023. 11(8):2313. doi:10.3390/biomedicines11082313
49. Matacchione G, Piacenza F, Pimpini L, Rosati Y, Marcozzi S. The role of the gut microbiota in the onset and progression of heart failure: insights into epigenetic mechanisms and aging. Clin Epigenetics. 2024 Nov 29;16(1):175. doi: 10.1186/s13148-024-01786-9. PMID: 39614396; PMCID: PMC11607950.
50. Matsiras D., Bezati S., Ventoulis I., Verras C., Parissis J., Polyzogopoulou E. Gut Failure: A Review of the Pathophysiology and Therapeutic Potentials in the Gut–Heart Axis. J Clin Med. 2023. 12(7):2567. doi:10.3390/jcm12072567
51. Mc Namara K., Alzubaidi H., Jackson J.K. Cardiovascular disease as a leading cause of death: how are pharmacists getting involved? Integr Pharm Res Pract. 2019. Volume 8:1-11. doi:10.2147/IPRP.S133088
52. Nagatomo Y., Tang W.H.W. Intersections Between Microbiome and Heart Failure: Revisiting the Gut Hypothesis. J Card Fail. 2015. 21(12):973-980. doi:10.1016/j.cardfail.2015.09.017
53. Norhammar A., Bodegard J., Vanderheyden M., et al. Prevalence, outcomes and costs of a contemporary, multinational population with heart failure. Heart. Published online February 13, 2023: heartjnl-2022-321702. doi:10.1136/heartjnl-2022-321702
54. Parolini C., Amedei A. Editorial: Gut Microbiota and Inflammation: Relevance in Cancer and Cardiovascular Disease. Front Pharmacol. 2020 Dec 23. 11:613511. doi: 10.3389/fphar.2020.613511. PMID: 33424614; PMCID: PMC7786398.
55. Pasini E., Aquilani R., Testa C. et al. Pathogenic Gut Flora in Patients With Chronic Heart Failure. JACC Heart Fail. 2016. 4(3):220-227. doi:10.1016/j.jchf.2015.10.009
56. Polsinelli V.B., Marteau L., Shah S.J. The role of splanchnic congestion and the intestinal microenvironment in the pathogenesis of advanced heart failure. Curr Opin Support Palliat Care. 2019. 13(1):24-30. doi:10.1097/SPC.0000000000000414
57. Rahman M.M., Islam F., Or-Rashid M., et al. The Gut Microbiota (Microbiome) in Cardiovascular Disease and Its Therapeutic Regulation. Front Cell Infect Microbiol. 2022. 12. doi:10.3389/fcimb.2022.903570
58. Salzano A., Cassambai S., Yazaki Y., et al. The Gut Axis Involvement in Heart Failure. Cardiol Clin. 2022. 40(2):161-169. doi:10.1016/j.ccl.2021.12.004
59. Sandek A., Bauditz J., Swidsinski A., et al. Altered Intestinal Function in Patients With Chronic Heart Failure. J Am Coll Cardiol. 2007. 50(16):1561-1569. doi:10.1016/j.jacc.2007.07.016
60. Shafi T., Powe N.R., Meyer T.W., Hwang S., Hai X., Melamed M.L., Banerjee T., Coresh J., Hostetter T.H. Trimethylamine N-Oxide and Cardiovascular Events in Hemodialysis Patients. J Am Soc Nephrol. 2017 Jan. 28(1):321-331. doi: 10.1681/ASN.2016030374. Epub 2016 Jul 19. PMID: 27436853. PMCID: PMC5198291.
61. Shirazi L.F., Bissett J., Romeo F., Mehta J.L. Role of Inflammation in Heart Failure. Curr Atheroscler Rep. 2017. 19(6):27. doi:10.1007/s11883-017-0660-3
62. Sun W., Du D., Fu T., Han Y., Li P., Ju H. Alterations of the Gut Microbiota in Patients With Severe Chronic Heart Failure. Front Microbiol. 2022. 12. doi:10.3389/fmicb.2021.813289
63. Tang W.H., Kitai T., Hazen S.L. Gut Microbiota in Cardiovascular Health and Disease. Circ Res. 2017 Mar 31. 120(7):1183-1196. doi: 10.1161/CIRCRESAHA.117.309715.
64. Tang W.H.W., Li D.Y,. Hazen S.L. Dietary metabolism, the gut microbiome, and heart failure. Nat Rev Cardiol. 2019. 16(3):137-154. doi:10.1038/s41569-018-0108-7
65. Tang W.H.W., Wang Z., Fan Y., et al. Prognostic Value of Elevated Levels of Intestinal Microbe-Generated Metabolite Trimethylamine-N-Oxide in Patients With Heart Failure. J Am Coll Cardiol. 2014. 64(18):1908-1914. doi:10.1016/j.jacc.2014.02.617
66. Tarride J.E., Lim M., DesMeules M., et al. A review of the cost of cardiovascular disease. Canadian Journal of Cardiology. 2009. 25(6):e195-e202. doi:10.1016/S0828-282X(09)70098-4
67. Vinolo M.A.R., Rodrigues H.G., Nachbar R.T., Curi R. Regulation of Inflammation by Short Chain Fatty Acids. Nutrients. 2011. 3(10):858-876. doi:10.3390/nu3100858.
68. W.H. Wilson Tang, Fredrik Bäckhed, Ulf Landmesser, Stanley L. Hazen, Intestinal Microbiota in Cardiovascular Health and Disease: JACC State-of-the-Art Review, Journal of the American College of Cardiology, Volume 73, Issue 16, 2019, Pages 2089-2105, ISSN 0735-1097, https://doi.org/10.1016/j.jacc.2019.03.024.
69. Walker A.W., Ince J., Duncan S.H., et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J. 2011. 5(2):220-230. doi:10.1038/ismej.2010.118
70. Witkowski M., Weeks T.L., Hazen S.L. Gut microbiota and cardiovascular disease. Circ Res. 2020.127(4):553-570. doi: 10.1161/CIRCRESAHA.120.316242.
71. World Health Organization. Fact sheets. Cardiovascular diseases (CVDs) [Internet]. Geneva: World Health Organization; 2021 [cited 2022 February 28]. Available from: https://www.who.int/news-room/ fact-sheets/detail/cardiovascular-diseases-(cvds).
72. Xu H., Wang X., Feng W. et al. The gut microbiota and its interactions with cardiovascular disease. Microb Biotechnol. 2020. 13(3):637-656. doi:10.1111/1751-7915.13524
73. Yazaki Y., Aizawa K., Israr M.Z., Negishi K., Salzano A., Saitoh Y., Kimura N., et al. Ethnic differences in association of outcomes with trimethylamine N-oxide in acute heart failure patients. ESC Heart Fail. 2020 Oct. 7(5):2373-2378. doi: 10.1002/ehf2.12777. Epub 2020 Jun 29. Erratum in: ESC Heart Fail. 2022 Apr. 9(2):1505. doi: 10.1002/ehf2.13813. PMID: 32598563. PMCID: PMC7524106.
74. Zhang Y., Wang Y., Ke B. JTMAO: how gut microbiota contributes to heart failure. Translational Research, 2021. 228, 109–125. https://doi.org/10.1016/j.trsl.2020.08.007
75. Zhen J., Zhou Z., He M., Han H.X., Lv E.H., et al. The gut microbial metabolite trimethylamine N-oxide and cardiovascular diseases. Front Endocrinol (Lausanne). 2023 Feb 7.14:1085041. doi: 10.3389/fendo.2023.1085041. PMID: 36824355. PMCID: PMC9941174.
76. Zhu Q., Gao R., Zhang Y. et al. Dysbiosis signatures of gut microbiota in coronary artery disease. Physiol Genomics. 2018. 50(10):893-903. doi:10.1152/physiolgenomics.00070.2018
Number of Views: 30
Category of articles:
Reviews
Bibliography link
Bekbosynova M.S., Jetybaeva S.K., Aipov B.R., Nurlan K.R., Sailybaeva A.I., Taukelova A.T., Laiskanov I.A., Aldanysh Zh.Zh., Kushugulova A.R. Study of the Gut Microbiota Composition Role in the Context of Chronic Heart Failure Development: Review of Current Data // Nauka i Zdravookhranenie [Science & Healthcare]. 2024. Vol.26 (6), pp. 122-131. doi 10.34689/SH.2024.26.6.015Related publications:
CURRENT STATE OF DERMATOPHYTE RESISTANCE TO ANTIMYCOTIC AGENTS
THE ROLE OF BIOMEDICAL INFORMATICS IN THE STUDY OF BRONCHOPULMONARY DYSPLASIA
THE IMPORTANCE OF VISUAL SCREENING FOR LUNG CANCER
DIAGNOSIS AND TREATMENT OF KIDNEY TRANSPLANT REJECTION: A LITERATURE REVIEW.
COMPARATIVE CHARACTERISTICS OF BREAST RECONSTRUCTION METHODS. LITERATURE REVIEW