РОЛЬ 3D-ВИЗУАЛИЗАЦИИ В ПРОГРАММЕ ЛУЧЕВОЙ ТЕРАПИИ РАКА ШЕЙКИ МАТКИ. ОБЗОР ЛИТЕРАТУРЫ

Введение: Рак шейки матки занимает лидирующие позиции в структуре онкопатологии и является самой частой причиной смерти женщин во всем мире. Эффективное лечение местно-распространенных форм рака шейки матки одна из важнейших медико–социальных задач современной онкогинекологии. Для женщин с местно-распространенным РШМ, стандарт медицинской помощи эволюционировал от одной только дистанционной лучевой терапии до комбинированной и с применением брахитерапии с параллельной химиотерапией. Благодаря компьютеризации, развитие планирования брахитерапии также не стоит на месте.

Цель: Проанализировать публикации, посвященные вопросам изучения современного состояния лучевой терапии для пациентов с раком шейки матки и оценить роль визуализации и брахитерапии в программе комплексного лечения рака шейки матки.

Стратегия поиска: поиск литературы был осуществлен в электронных базах PubMed, Google Scholar и e-library по ключевым словам (рак шейки матки, лучевая терапия, брахитерпия). 84 релевантных работ, отражающих характеристики проблемы были приняты для описания в обзоре.

Результаты: По результатам клинических исследований применение 3D-IGBT в программе комплексного лечения рака шейки матки 3D-визуализация на этапе планирования и проведения брахитерапии создает клинически выгодные условия для эффективной терапии уменьшен риск смещения аппликаторов, снижена нагрузка для пациента и медицинского персонала, а также ускорен этап проведения брахитерапии.

Выводы: Таким образом, внедрение 3D-планирования обеспечивает хорошие показатели локального контроля у пациентов с РШМ независимо от размера опухоли и клинической стадии без увеличения частоты тяжелых поздних токсических эффектов, обеспечивая хорошие показатели локального контроля у пациентов с РШМ независимо от размера опухоли и клинической стадии без увеличения частоты тяжелых поздних токсических эффектов, что имеет важное значение. Дальнейшее изучение значимости визуализации и брахитерапии в программе комплексного лечения рака шейки матки остается актуальным и на сегодняшний день.

Ольга Б. Андреева 1, http://orcid.org/0000-0002-2802-9441

Тасболат А. Адылханов 1, http://orcid.org/0000-0002-9092-5060

Алмагуль С. Жабагина 1, http://orcid.org/0000-0001-8956-6286

Данияр Т. Раисов 1, http://orcid.org/0000-0002-3872-1263

Найля М. Уразалина 1,

 

1 НАО «Медицинский университет Семей», г. Семей, Республика Казахстан.

1. Амиреев С. и др. Образовательно-информа-ционная работа как компонент прививочной кампании против папилломавирусной инфекции в Казахстане // Здоровье – основа человеческого потенциала: проблемы и пути их решения. 2013. Т.8. №.2 С. 543-548. 2. Ашрафян Л.А. и др. Современные лучевые методы диагностики (сонография и магнитно-резонансная томография) в оценке эффективности неоадъювантной химиотерапии местно-распространенного рака шейки матки IIb-IIIb стадий // Сибирский онкологический журнал. 2008. №. 5. – С. 16-22. 3. Кайдарова Д.Р., Кайрбаев М.Р., Болатбекова Р.О. Эпидемиология рака шейки матки в республике Казахстан за 10 лет (2007-2016 гг.) // Вопросы онкологии. 2017. Т. 63. №. 4. С. 572-579. 4. Крейнина Ю.М. Современные тенденции и методы визуально-контролируемой лучевой терапии в лечении местно-распространенного рака шейки матки // Вестник Российского научного центра рентгенорадиологии Минздрава России. 2011. Т.4. №11. 5. Нургазиев К.Ш. и др. Показатели онкологической службы Республики Казахстан за 2011 год (статистические материалы) // Статистические материалы. Алматы. 2012. Т. 201. С. 108. 6. Anttila A. et al. Alternative technologies in cervical cancer screening: a randomised evaluation trial // BMC Public Health. 2006. Т. 6. №. 1. С. 252. 7. Arbyn M. et al. Trends in cervical cancer incidence and mortality in the Baltic countries, Bulgaria and Romania // International Journal of Cancer. 2011. Т.128. №8. С. 1899-1907. 8. Banerjee R., Kamrava M. Brachytherapy in the treatment of cervical cancer: a review // International journal of women's health. – 2014. – Т. 6. – С. 555. 9. Bentzen S. M. Radiation oncology health technology assessment--the best is the enemy of the good //Nature Reviews. Clinical Oncology. – 2008. – Т. 5. – №. 10. – С. 563. 10. Bray F. et al. Global cancer transitions according to the Human Development Index (2008–2030): a population-based study // The lancet oncology. 2012. – Vol. 13. – № 8. – P. 790-801. 11. Center M.M., Jemal A. International trends in liver cancer incidence rates // Cancer Epidemiology and Prevention Biomarkers. 2011. – Т.20. – №.11. – P. 2362-2368. 12. Charra-Brunaud C. et al. 152 oral Dosimetric and clinical results of a french prospective study of 3D brachytherapy for cervix carcinoma // Radiotherapy and Oncology. 2011. – Т. 99. – P. 57. 13. Charra-Brunaud C. et al. Impact of 3D image-based PDR brachytherapy on outcome of patients treated for cervix carcinoma in France: results of the French STIC prospective study // Radiotherapy and Oncology. 2012. Т. 103. №.3. С. 305-313. 14. Choong E.S. et al. Hybrid (CT/MRI based) vs. MRI only based image-guided brachytherapy in cervical cancer: Dosimetry comparisons and clinical outcome // Brachytherapy. 2016. Т.15. №.1. С. 40-48. 15. Chottaweesak P. et al. Comparison of bladder and rectal doses between conventional 2D and 3D brachytherapy treatment planning in cervical cancer // Biomedical Imaging and Intervention Journal. 2014. Т. 10. №. 1. С. 1-7. 16. Coia L. et al. The patterns of care outcome study for cancer of the uterine cervix results of the second national practice survey // Cancer. 1990. Т.66. №. 12. С.2451-2456. 17. Darlin L. Cervical cancer studies on prevention and treatment // Department of Obstetrics and Gynecology, Lund University, 2013. Vol. 2013. № 142. 18. De Brabandere M. et al. Potential of dose optimisation in MRI-based PDR brachytherapy of cervix carcinoma // Radiotherapy and oncology. 2008. Т. 88. №. 2. С. 217-226. 19. Dimopoulos J.C. A. et al. Dose–effect relationship for local control of cervical cancer by magnetic resonance image-guided brachytherapy // Radiotherapy and oncology. 2009. Т. 93. №. 2. С. 311-315. 20. Dimopoulos J.C. A. et al. Systematic evaluation of MRI findings in different stages of treatment of cervical cancer: potential of MRI on delineation of target, pathoanatomic structures, and organs at risk // International Journal of Radiation Oncology* Biology* Physics. 2006. Т. 64. №. 5. С. 1380-1388. 21. Dimopoulos J.C. A. et al. Dose–volume histogram parameters and local tumor control in magnetic resonance image–guided cervical cancer brachytherapy // International Journal of Radiation Oncology* Biology* Physics. 2009. Т.75. №.1. С. 56-63. 22. Dyk P. et al. Cervical gross tumor volume dose predicts local control using magnetic resonance imaging/diffusion-weighted imaging - guided high-dose-rate and positron emission tomography/computed tomography - guided intensity modulated radiation therapy // International Journal of Radiation Oncology* Biology* Physics. 2014. Т. 90. №4. С. 794-801. 23. Emami B. 3-D Conformal RadiationTherapy-Part III: Clinical Aspects. International Journal of Radiation Oncology. Biology. Physics. 1997. Т.39. №2S1. С. 123-123. 24. Ferlay J. et al. Cancer incidence in five continents, volumes I to IX: IARC CancerBase no. 9 [internet]. Lyon, France: International Agencyfor Researchon Cancer; 2010. P.856. 25. Ferlay J. et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. International journal of cancer. 2015. – Vol. 136. №5. P. 359-386. 26. Franco E.L. et al. Integration of human papillomavirus vaccination and cervical cancer screening in Latin America and the Caribbean. Vaccine. 2008. Т.26. P. 88-95. 27. Georg P. et al. Correlation of dose–volume parameters, endoscopic and clinical rectal side effects in cervix cancer patients treated with definitive radiotherapy including MRI-based brachytherapy // Radiotherapy and Oncology. 2009. Т. 91. №2. С. 173-180. 28. Georg P. et al. Dose effect relationship for late side effects of the rectum and urinary bladder in magnetic resonance image-guided adaptive cervix cancer brachytherapy. International Journal of Radiation Oncology* Biology* Physics. 2012. Т. 82. №2. С. 653-657. 29. Georg P. et al. Dose–volume histogram parameters and late side effects in magnetic resonance image–guided adaptive cervical cancer brachytherapy // International Journal of Radiation Oncology* Biology* Physics. 2011. Т. 79. №. 2. С. 356-362 30. Gill B.S. et al. MRI-guided high–dose-rate intracavitary brachytherapy for treatment of cervical cancer: The University of Pittsburgh experience // International Journal of Radiation Oncology* Biology* Physics. 2015. Т. 91. №. 3. С. 540-547. 31. Green J.A. et al. Survival and recurrence after concomitant chemotherapy and radiotherapy for cancer of the uterine cervix: a systematic review and meta-analysis // The Lancet. 2001. Vol. 358. №. 9284. P. 781-786. 32. Haie-Meder C. et al. Recommendations from Gynecological (GYN) GEC-ESTRO Working Group (I): concepts and terms in 3D image based 3D treatment planning in cervix cancer brachytherapy with emphasis on MRI assessment of GTV and CTV // Radiotherapy and oncology. 2005. Т. 74. №. 3. С. 235-245. 33. Hanks G.E., Herring D.F., Kramer S. Patterns of care outcome studies results of the national practice in cancer of the cervix // Cancer. 1983. Т. 51. №5. С. 959-967 34. Hegazy N. et al. High-risk clinical target volume delineation in CT-guided cervical cancer brachytherapy: impact of information from FIGO stage with or without systematic inclusion of 3D documentation of clinical gynecological examination // Acta Oncologica. 2013. Т. 52. №7. С. 1345-1352. 35. IARC Working Group et al. Cervix cancer screening. IARC handbooks of cancer prevention, International Agency for Research on Cancer. World Health Organization. IARC Press. 2005. – P.15-19. 36. Igissinov N. et al. Epidemiological aspects of morbidity and mortality from cervical cancer in Kazakhstan. Asian Pacific Journal of Cancer Prevention. 2012. Т. 13. №. 5. С. 2345-2348. 37. International Agency for Research on Cancer. A review of human carcinogens: biological agents. – World Health Organization, 2012. Т. 100. – P.10-14. 38. Isohashi F. et al. Rectal dose and source strength of the high-dose-rate iridium-192 both affect late rectal bleeding after intracavitary radiation therapy for uterine cervical carcinoma // International Journal of Radiation Oncology* Biology* Physics. 2010. Т. 77. №3. С. 758-764. 39. Jemal A. et al. Global patterns of cancer incidence and mortality rates and trends // Cancer Epidemiology and Prevention Biomarkers. 2010. Т. 19. №8. С. 1893-1907. 40. Kang H.C. et al. 3D CT-based high-dose-rate brachytherapy for cervical cancer: clinical impact on late rectal bleeding and local control // Radiotherapy and Oncology. 2010. Т. 97. №3. С. 507-513. 41. Kato S. et al. CT-based 3D dose-volume parameter of the rectum and late rectal complication in patients with cervical cancer treated with high-dose-rate intracavitary brachytherapy // Journal of radiation research. 2010. Т. 51. – №2. С. 215-221. 42. Kausova G., Eleubaeva J., Shibanova A., Kusainova B. (2013) The problem of early detection of cervical cancer in the Republic of Kazakhstan // Georgian Med News; 217: 11-15.9. 43. Kim R.Y., Shen S., Duan J. Image-based three-dimensional treatment planning of intracavitary brachytherapy for cancer of the cervix: dose-volume histograms of the bladder, rectum, sigmoid colon, and small bowel // Brachytherapy. 2007. Т. 6. №3. С. 187-194. 44. Kirisits C., Erickson B., Pötter R. Gynecologic radiation therapy. – Springer-Verlag Berlin Heidelberg, 2011. P.382-386. 45. Koom W.S. et al. Computed tomography-based high-dose-rate intracavitary brachytherapy for uterine cervical cancer: preliminary demonstration of correlation between dose–volume parameters and rectal mucosal changes observed by flexible sigmoidoscopy // International Journal of Radiation Oncology* Biology* Physics. 2007. Т. 68. №5. С. 1446-1454. 46. Koutsky L.A. et al. A controlled trial of a human papillomavirus type 16 vaccine // New England Journal of Medicine. 2002. Vol. 347. №21. P. 1645-1651. 47. Lanciano R.M. et al. Pretreatment and treatment factors associated with improved outcome in squamous cell carcinoma of the uterine cervix: a final report of the 1973 and 1978 patterns of care studies // International Journal of Radiation Oncology* Biology* Physics. 1991. Т. 20. №4. С. 667-676. 48. Lee L.J., Viswanathan A.N. Predictors of toxicity after image-guided high-dose-rate interstitial brachytherapy for gynecologic cancer // International Journal of Radiation Oncology* Biology* Physics. 2012. Т.84. №5. С.1192-1197. 49. Lindegaard J.C. et al. MRI-guided adaptive radiotherapy in locally advanced cervical cancer from a Nordic perspective // Acta Oncologica. 2013. Т. 52. №7. С. 1510-1519. 50. Mathers C. The global burden of disease: 2004 update. – World Health Organization, 2008. 51. Mboumba Bouassa R. S. et al. Cervical cancer in sub-Saharan Africa: a preventable noncommunicable disease // Expert review of anti-infective therapy. 2017. Т. 15. №6. С. 613-627. 52. Montana G.S., Martz K.L., Hanks G.E. Patterns and sites of failure in cervix cancer treated in the USA in 1978 // International Journal of Radiation Oncology* Biology* Physics. 1991. Т. 20. №1. С. 87-93. 53. Murakami N. et al. CT based three dimensional dose-volume evaluations for high-dose rate intracavitary brachytherapy for cervical cancer //BMC cancer. – 2014. – Т. 14. – №. 1. – С. 447. 54. Nag S. et al. Proposed guidelines for image-based intracavitary brachytherapy for cervical carcinoma: report from Image-Guided Brachytherapy Working Group // International Journal of Radiation Oncology* Biology* Physics. 2004. Т. 60. №4. С. 1160-1172. 55. National Comprehensive Cancer Network et al. NCCN Clinical Practice Guidelines in Oncology. Cervical cancer [Internet]. Fort Washington, PA: National Comprehensive Cancer Network; [cited 2018 Mar 22]. 56. Ohno T. et al. In-room computed tomography–based brachytherapy for uterine cervical cancer: results of a 5-year retrospective study // Journal of radiation research. 2016. Т. 58. №4. С. 543-551. 57. Parkin D.M. et al. Burden and trends of type-specific human papillomavirus infections and related diseases in the Latin America and Caribbean region // Vaccine. 2008. Т. 26. – С. L1-L15. 58. Parkin D.M., Bray F. The burden of HPV-related cancers // Vaccine. 2006. Т. 24. С. S11-S25. 59. Parkin D.M. et al. Global cancer statistics, 2002 // CA: a cancer journal for clinicians. 2005. Vol. 55. №2. P. 74-108. 60. Pelloski C. E. et al. Comparison between CT-based volumetric calculations and ICRU reference-point estimates of radiation doses delivered to bladder and rectum during intracavitary radiotherapy for cervical cancer // International Journal of Radiation Oncology* Biology* Physics. 2005. Т. 62. №1. С. 131-137. 61. Perez C.A. et al. Radiation therapy alone in the treatment of carcinoma of the uterine cervix. II. Analysis of complications // Cancer. 1984. Т. 54. №2. С. 235-246. 62. Pinn-Bingham M. et al. Outcomes of high-dose-rate interstitial brachytherapy in the treatment of locally advanced cervical cancer: long-term results // International Journal of Radiation Oncology* Biology* Physics. 2013. Т. 85. №3. С. 714-720. 63. Pista A. et al. Prevalence of human papillomavirus infection in women in Portugal: the CLEOPATRE Portugal study // International Journal of Gynecologic Cancer. 2011. Т. 21. №. 6. С. 1150-1158. 64. Pötter R. et al. Clinical impact of MRI assisted dose volume adaptation and dose escalation in brachytherapy of locally advanced cervix cancer // Radiotherapy and oncology. 2007. Т. 83. №2. С. 148-155. 65. Pötter R. et al. Clinical outcome of protocol based image (MRI) guided adaptive brachytherapy combined with 3D conformal radiotherapy with or without chemotherapy in patients with locally advanced cervical cancer // Radiotherapy and Oncology. 2011. Т. 100. №1. С. 116-123. 66. Pötter R. et al. Recommendations from gynaecological (GYN) GEC ESTRO working group (II): concepts and terms in 3D image-based treatment planning in cervix cancer brachytherapy-3D dose volume parameters and aspects of 3D image-based anatomy, radiation physics, radiobiology // Radiotherapy and Oncology. 2006. Т. 78. №. 1. С. 67-77. 67. Pötter R. et al. Value of magnetic resonance imaging without or with applicator in place for target definition in cervix cancer brachytherapy // International Journal of Radiation Oncology* Biology* Physics. 2016. Т. 94. №3. С. 588-597. 68. Quinn M. A. et al. Carcinoma of the cervix uteri // International Journal of Gynecology & Obstetrics. 2006. Т. 95. С. S43-S103. 69. Ribeiro I. et al. Long term experience with 3D image guided brachytherapy and clinical outcome in cervical cancer patients // Radiotherapy and Oncology. 2016. Т. 120. №3. С. 447-454 70. Rijkmans E. C. et al. Improved survival of patients with cervical cancer treated with image-guided brachytherapy compared with conventional; brachytherapy // Gynecologic oncology. 2014. Т. 135. №2. С. 231-238. 71. Rogovskaya S.I. et al. Human papillomavirus prevalence and type-distribution, cervical cancer screening practices and current status of vaccination implementation in Russian Federation, the Western countries of the former Soviet Union, Caucasus region and Central Asia // Vaccine. 2013. Т. 31. С. H46-H58. 72. Sankaranarayanan R. et al. Cancer survival in Africa, Asia, and Central America: a population-based study // The lancet oncology. 2010. Т. 11. №2. С. 165-173. 73. Sturdza A. et al. Image guided brachytherapy in locally advanced cervical cancer: improved pelvic control and survival in RetroEMBRACE, a multicenter cohort study // Radiotherapy and Oncology. 2016. Т. 120. №. 3. С. 428-433. 74. Tamaki T. et al. Dose–volume histogram analysis of composite EQD2 dose distributions using the central shielding technique in cervical cancer radiotherapy // Brachytherapy. 2016. Т. 15. №5. С. 598-606. 75. Tan L.T. et al. Clinical impact of computed tomography-based image-guided brachytherapy for cervix cancer using the tandem-ring applicator - the Addenbrooke's experience // Clinical Oncology. 2009. Т. 21. №3. С. 175-182. 76. Tanderup K. et al. OC-0265: Dose-response for local control in image guided cervix brachytherapy in the retro EMBRACE study // Radiotherapy and Oncology. 2013. Т. 106. С. S104-S105. 77. Thwaites D. I., Verellen D. VorsprungdurchTechnik: evolution, implementation, QA and safety of new technology in radiotherapy // RadiotherapyandOncology. 2010. Т. 94. №2. С. 125-128. 78. Toita T. et al. Phase II study of concurrent chemoradiotherapy with high-dose-rate intracavitary brachytherapy in patients with locally advanced uterine cervical cancer: efficacy and toxicity of a low cumulative radiation dose schedule // Gynecologic oncology. 2012. Т. 126. №2. С. 211-216. 79. Verdecchia A. et al. Recent cancer survival in Europe: a 2000–02 period analysis of EUROCARE-4 data // The lancet oncology. 2007. Т. 8. №9. С. 784-796. 80. Verellen D. et al. Innovations in image-guided radiotherapy // Nature Reviews Cancer. 2007. Т. 7. №12. С. 949. 81. Viswanathan A. N. et al. Computed tomography versus magnetic resonance imaging-based contouring in cervical cancer brachytherapy: results of a prospective trial and preliminary guidelines for standardized contours // International Journal of Radiation Oncology* Biology* Physics. 2007. Т. 68. №2. С. 491-498. 82. Viswanathan A. N. et al. International brachytherapy practice patterns: a survey of the Gynecologic Cancer Intergroup (GCIG) // International Journal of Radiation Oncology* Biology* Physics. 2012. Т. 82. №1. С. 250-255. 83. World Health Organization et al. Global status report on noncommunicable diseases 2014. – World Health Organization, 2014. №. WHO/NMH/NVI/15.1. 84. Zolciak-Siwinska A. et al. Computed tomography–planned high-dose-rate brachytherapy for treating uterine cervical cancer // International Journal of Radiation Oncology* Biology* Physics. 2016. Т. 96. №1. С. 87-92. Referensec: 1. Amireev S. i dr. Obrazovatel'no-informatsionnaya rabota kak komponent privivochnoi kampanii protiv papillomavirusnoi infektsii v Kazakhstane [Educational and informational work as a component of the vaccination campaign against human papillomavirus infection in Kazakhstan]. Zdorov'e – osnova chelovecheskogo potentsiala: problemy i puti ikh resheniya [Health is the basis of human potential: problems and solutions]. 2013. T. 8. №. 2. P. 543-548 [in Russian] 2. Ashrafyan L.A. i dr. Sovremennye luchevye metody diagnostiki (sonografiya i magnitno-rezonansnaya tomografiya) v otsenke effektivnosti neoadjuvantnoi khimioterapii mestno-rasprostranennogo raka sheiki matki IIb-IIIb stadii [Modern radiation diagnostic methods (sonography and magnetic resonance imaging) in assessing the effectiveness of neoadjuvant chemotherapy for locally advanced stage IIb-IIIb cervical cancer]. Sibirskii onkologicheskii zhurnal [Siberian Oncology Journal ]. 2008. №5. P.16-22 [in Russian] 3. Kaidarova D.R., Kajrbaev M.R., Bolatbekova R.O. Epidemiologiya raka sheiki matki v Respublike Kazakhstan za 10 let (2007-2016 gg.) [Epidemiology of cervical cancer in the Republic of Kazakhstan for 10 years (2007-2016)]. Voprosy onkologii [Questions of Oncology]. 2017. T. 63. №. 4. pp. 572-579. [in Russian] 4. Kreinina Yu. M. Sovremennye tendentsii i metody vizual'no-kontroliruemoi luchevoi terapii v lechenii mestno-rasprostranennogo raka sheiki matki [Current trends and methods of visually-controlled radiation therapy in the field of locally advanced cervical cancer]. Vestnik Rossiiskogo nauchnogo tsentra rentgenoradiologii Minzdrava Rossii [Bulletin of the Russian Scientific Center for Radiological Radiology of the Ministry of Health of Russia]. 2011. T. 4. №.11. [in Russian] 5. Nurgaziev K. Sh. i dr. Pokazateli onkologicheskoi sluzhby Respubliki Kazakhstan za 2011 god (statisticheskie materialy) [ndicators of the Oncological Service of the Republic of Kazakhstan for 2011 (statistical materials)] // Statisticheskie materialy [Statistical materials]. Almaty. 2012. T. 201. pp. 108. [in Russian] 6. Anttila A. et al. Alternative technologies in cervical cancer screening: a randomised evaluation trial. BMC Public Health. 2006. Т. 6. №. 1. С. 252. 7. Arbyn M. et al. Trends in cervical cancer incidence and mortality in the Baltic countries, Bulgaria and Romania. International Journal of Cancer. 2011. Т. 128. №. 8. С. 1899-1907. 8. Banerjee R., Kamrava M. Brachytherapy in the treatment of cervical cancer: a review //International journal of women's health. – 2014. – Т. 6. – С. 555. 9. Bentzen S. M. Radiation oncology health technology assessment--the best is the enemy of the good //Nature Reviews. Clinical Oncology. – 2008. – Т. 5. – №. 10. – С. 563. 10. Bray F. et al. Global cancer transitions according to the Human Development Index (2008–2030): a population-based study. The lancet oncology. 2012. Vol. 13. №. 8. P. 790-801. 11. Center M.M., Jemal A. International trends in liver cancer incidence rates // Cancer Epidemiology and Prevention Biomarkers. 2011. Т. 20. №11. С. 2362-2368. 12. Charra-Brunaud C. et al. 152 oral Dosimetric and clinical results of a french prospective study of 3D brachytherapy for cervix carcinoma // Radiotherapy and Oncology. 2011. – Т. 99. – P. 57. 13. Charra-Brunaud C. et al. Impact of 3D image-based PDR brachytherapy on outcome of patients treated for cervix carcinoma in France: results of the French STIC prospective study. Radiotherapy and Oncology. 2012. Т. 103. №. 3. С. 305-313. 14. Choong E. S. et al. Hybrid (CT/MRI based) vs. MRI only based image-guided brachytherapy in cervical cancer: Dosimetry comparisons and clinical outcome. Brachytherapy. 2016. Т. 15. №. 1. С. 40-48. 15. Chottaweesak P. et al. Comparison of bladder and rectal doses between conventional 2D and 3D brachytherapy treatment planning in cervical cancer. Biomedical Imaging and Intervention Journal. 2014. Т. 10. №.1. С. 1-7. 16. Coia L. et al. The patterns of care outcome study for cancer of the uterine cervix results of the second national practice survey. Cancer. 1990. Т. 66. №. 12. С. 2451-2456. 17. Darlin L. Cervical cancer studies on prevention and treatment. Department of Obstetrics and Gynecology, Lund University, 2013. Vol. 2013. № 142. 18. De Brabandere M. et al. Potential of dose optimisation in MRI-based PDR brachytherapy of cervix carcinoma. Radiotherapy and oncology. 2008. Т. 88. №. 2. С. 217-226. 19. Dimopoulos J. C. A. et al. Dose–effect relationship for local control of cervical cancer by magnetic resonance image-guided brachytherapy. Radiotherapy and oncology. – 2009. Т. 93. №. 2. С. 311-315. 20. Dimopoulos J.C. A. et al. Systematic evaluation of MRI findings in different stages of treatment of cervical cancer: potential of MRI on delineation of target, pathoanatomic structures, and organs at risk. I nternational Journal of Radiation Oncology* Biology* Physics. 2006. Т. 64. №. 5. С. 1380-1388. 21. Dimopoulos J.C. A. et al. Dose–volume histogram parameters and local tumor control in magnetic resonance image–guided cervical cancer brachytherapy. International Journal of Radiation Oncology* Biology* Physics. 2009. Т.75. №.1. С. 56-63. 22. Dyk P. et al. Cervical gross tumor volume dose predicts local control using magnetic resonance imaging/diffusion-weighted imaging - guided high-dose-rate and positron emission tomography/computed tomography - guided intensity modulated radiation therapy // International Journal of Radiation Oncology* Biology* Physics. 2014. Т. 90. №4. С. 794-801. 23. Emami B. 3-D Conformal RadiationTherapy-Part III: Clinical Aspects. International Journal of Radiation Oncology. Biology. Physics. 1997. Т.39. №2S1. С. 123-123. 24. Ferlay J. et al. Cancer incidence in five continents, volumes I to IX: IARC CancerBase no. 9 [internet]. Lyon, France: International Agencyfor Researchon Cancer; 2010. P.856. 25. Ferlay J. et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. International journal of cancer. 2015. – Vol. 136. №5. P. 359-386. 26. Franco E.L. et al. Integration of human papillomavirus vaccination and cervical cancer screening in Latin America and the Caribbean. Vaccine. 2008. Т.26. P. 88-95. 27. Georg P. et al. Correlation of dose–volume parameters, endoscopic and clinical rectal side effects in cervix cancer patients treated with definitive radiotherapy including MRI-based brachytherapy. Radiotherapy and Oncology. 2009. Т. 91. №2. С. 173-180. 28. Georg P. et al. Dose effect relationship for late side effects of the rectum and urinary bladder in magnetic resonance image-guided adaptive cervix cancer brachytherapy. International Journal of Radiation Oncology* Biology* Physics. 2012. Т. 82. №2. С. 653-657. 29. Georg P. et al. Dose–volume histogram parameters and late side effects in magnetic resonance image–guided adaptive cervical cancer brachytherapy. International Journal of Radiation Oncology* Biology* Physics. 2011. Т. 79. №. 2. С. 356-362 30. Gill B.S. et al. MRI-guided high–dose-rate intracavitary brachytherapy for treatment of cervical cancer: The University of Pittsburgh experience. International Journal of Radiation Oncology* Biology* Physics. 2015. Т. 91. №. 3. С. 540-547. 31. Green J.A. et al. Survival and recurrence after concomitant chemotherapy and radiotherapy for cancer of the uterine cervix: a systematic review and meta-analysis. The Lancet. 2001. Vol. 358. №. 9284. P. 781-786. 32. Haie-Meder C. et al. Recommendations from Gynecological (GYN) GEC-ESTRO Working Group (I): concepts and terms in 3D image based 3D treatment planning in cervix cancer brachytherapy with emphasis on MRI assessment of GTV and CTV. Radiotherapy and oncology. 2005. Т. 74. №. 3. С. 235-245. 33. Hanks G.E., Herring D.F., Kramer S. Patterns of care outcome studies results of the national practice in cancer of the cervix. Cancer. 1983. Т. 51. №5. С. 959-967 34. Hegazy N. et al. High-risk clinical target volume delineation in CT-guided cervical cancer brachytherapy: impact of information from FIGO stage with or without systematic inclusion of 3D documentation of clinical gynecological examination. Acta Oncologica. 2013. Т. 52. №7. С. 1345-1352. 35. IARC Working Group et al. Cervix cancer screening. IARC handbooks of cancer prevention, International Agency for Research on Cancer. World Health Organization. IARC Press. 2005. – P.15-19. 36. Igissinov N. et al. Epidemiological aspects of morbidity and mortality from cervical cancer in Kazakhstan. Asian Pacific Journal of Cancer Prevention. 2012. Т. 13. №. 5. С. 2345-2348. 37. International Agency for Research on Cancer. A review of human carcinogens: biological agents. – World Health Organization, 2012. Т. 100. – P.10-14. 38. Isohashi F. et al. Rectal dose and source strength of the high-dose-rate iridium-192 both affect late rectal bleeding after intracavitary radiation therapy for uterine cervical carcinoma. International Journal of Radiation Oncology* Biology* Physics. 2010. Т. 77. №3. С. 758-764. 39. Jemal A. et al. Global patterns of cancer incidence and mortality rates and trends. Cancer Epidemiology and Prevention Biomarkers. 2010. Т. 19. №8. С. 1893-1907. 40. Kang H.C. et al. 3D CT-based high-dose-rate brachytherapy for cervical cancer: clinical impact on late rectal bleeding and local control. Radiotherapy and Oncology. 2010. Т. 97. №3. С. 507-513. 41. Kato S. et al. CT-based 3D dose-volume parameter of the rectum and late rectal complication in patients with cervical cancer treated with high-dose-rate intracavitary brachytherapy. Journal of radiation research. 2010. Т. 51. – №2. С. 215-221. 42. Kausova G., Eleubaeva J., Shibanova A., Kusainova B. (2013) The problem of early detection of cervical cancer in the Republic of Kazakhstan. Georgian Med News; 217: 11-15.9. 43. Kim R.Y., Shen S., Duan J. Image-based three-dimensional treatment planning of intracavitary brachytherapy for cancer of the cervix: dose-volume histograms of the bladder, rectum, sigmoid colon, and small bowel. Brachytherapy. 2007. Т. 6. №3. С. 187-194. 44. Kirisits C., Erickson B., Pötter R. Gynecologic radiation therapy. – Springer-Verlag Berlin Heidelberg, 2011. – P.382-386. 45. Koom W.S. et al. Computed tomography-based high-dose-rate intracavitary brachytherapy for uterine cervical cancer: preliminary demonstration of correlation between dose–volume parameters and rectal mucosal changes observed by flexible sigmoidoscopy. International Journal of Radiation Oncology* Biology* Physics. 2007. Т. 68. №5. С. 1446-1454. 46. Koutsky L.A. et al. A controlled trial of a human papillomavirus type 16 vaccine. New England Journal of Medicine. 2002. Vol. 347. №21. P. 1645-1651. 47. Lanciano R.M. et al. Pretreatment and treatment factors associated with improved outcome in squamous cell carcinoma of the uterine cervix: a final report of the 1973 and 1978 patterns of care studies. International Journal of Radiation Oncology* Biology* Physics. 1991. Т. 20. №4. С. 667-676. 48. Lee L.J., Viswanathan A.N. Predictors of toxicity after image-guided high-dose-rate interstitial brachytherapy for gynecologic cancer. International Journal of Radiation Oncology* Biology* Physics. 2012. Т.84. №5. С.1192-1197. 49. Lindegaard J.C. et al. MRI-guided adaptive radiotherapy in locally advanced cervical cancer from a Nordic perspective. Acta Oncologica. 2013. Т. 52. №7. С. 1510-1519. 50. Mathers C. The global burden of disease: 2004 update. – World Health Organization, 2008. 51. Mboumba Bouassa R. S. et al. Cervical cancer in sub-Saharan Africa: a preventable noncommunicable disease. Expert review of anti-infective therapy. 2017. Т. 15. №6. С. 613-627. 52. Montana G.S., Martz K.L., Hanks G.E. Patterns and sites of failure in cervix cancer treated in the USA in 1978. International Journal of Radiation Oncology* Biology* Physics. 1991. Т. 20. №1. С. 87-93. 53. Murakami N. et al. CT based three dimensional dose-volume evaluations for high-dose rate intracavitary brachytherapy for cervical cancer. BMC cancer. 2014. Т. 14. №. 1. С. 447. 54. Nag S. et al. Proposed guidelines for image-based intracavitary brachytherapy for cervical carcinoma: report from Image-Guided Brachytherapy Working Group. International Journal of Radiation Oncology* Biology* Physics. 2004. Т. 60. №4. С. 1160-1172. 55. National Comprehensive Cancer Network et al. NCCN Clinical Practice Guidelines in Oncology. Cervical cancer [Internet]. Fort Washington, PA: National Comprehensive Cancer Network; [cited 2018 Mar 22]. 56. Ohno T. et al. In-room computed tomography–based brachytherapy for uterine cervical cancer: results of a 5-year retrospective study. Journal of radiation research. 2016. Т. 58. №4. С. 543-551. 57. Parkin D.M. et al. Burden and trends of type-specific human papillomavirus infections and related diseases in the Latin America and Caribbean region. Vaccine. 2008. Т. 26. – С. L1-L15. 58. Parkin D.M., Bray F. The burden of HPV-related cancers. Vaccine. 2006. Т. 24. С. S11-S25. 59. Parkin D.M. et al. Global cancer statistics, 2002. CA: a cancer journal for clinicians. 2005. Vol. 55. №2. P. 74-108. 60. Pelloski C. E. et al. Comparison between CT-based volumetric calculations and ICRU reference-point estimates of radiation doses delivered to bladder and rectum during intracavitary radiotherapy for cervical cancer. International Journal of Radiation Oncology* Biology* Physics. 2005. Т. 62. №1. С. 131-137. 61. Perez C.A. et al. Radiation therapy alone in the treatment of carcinoma of the uterine cervix. II. Analysis of complications. Cancer. 1984. Т. 54. №2. С. 235-246. 62. Pinn-Bingham M. et al. Outcomes of high-dose-rate interstitial brachytherapy in the treatment of locally advanced cervical cancer: long-term results. International Journal of Radiation Oncology* Biology* Physics. 2013. Т. 85. №3. С. 714-720. 63. Pista A. et al. Prevalence of human papillomavirus infection in women in Portugal: the CLEOPATRE Portugal study. International Journal of Gynecologic Cancer. 2011. Т. 21. №. 6. С. 1150-1158. 64. Pötter R. et al. Clinical impact of MRI assisted dose volume adaptation and dose escalation in brachytherapy of locally advanced cervix cancer. Radiotherapy and oncology. 2007. Т. 83. №2. С. 148-155. 65. Pötter R. et al. Clinical outcome of protocol based image (MRI) guided adaptive brachytherapy combined with 3D conformal radiotherapy with or without chemotherapy in patients with locally advanced cervical cancer. Radiotherapy and Oncology. 2011. Т. 100. №1. С. 116-123. 66. Pötter R. et al. Recommendations from gynaecological (GYN) GEC ESTRO working group (II): concepts and terms in 3D image-based treatment planning in cervix cancer brachytherapy-3D dose volume parameters and aspects of 3D image-based anatomy, radiation physics, radiobiology. Radiotherapy and Oncology. 2006. Т. 78. №. 1. С. 67-77. 67. Pötter R. et al. Value of magnetic resonance imaging without or with applicator in place for target definition in cervix cancer brachytherapy. International Journal of Radiation Oncology* Biology* Physics. 2016. Т. 94. №3. С. 588-597. 68. Quinn M. A. et al. Carcinoma of the cervix uteri. International Journal of Gynecology & Obstetrics. 2006. Т. 95. С. S43-S103. 69. Ribeiro I. et al. Long term experience with 3D image guided brachytherapy and clinical outcome in cervical cancer patients. Radiotherapy and Oncology. 2016. Т. 120. №3. С. 447-454 70. Rijkmans E. C. et al. Improved survival of patients with cervical cancer treated with image-guided brachytherapy compared with conventional; brachytherapy. Gynecologic oncology. 2014. Т. 135. №2. С. 231-238. 71. Rogovskaya S.I. et al. Human papillomavirus prevalence and type-distribution, cervical cancer screening practices and current status of vaccination implementation in Russian Federation, the Western countries of the former Soviet Union, Caucasus region and Central Asia. Vaccine. 2013. Т. 31. С. H46-H58. 72. Sankaranarayanan R. et al. Cancer survival in Africa, Asia, and Central America: a population-based study. The lancet oncology. 2010. Т. 11. №2. С. 165-173. 73. Sturdza A. et al. Image guided brachytherapy in locally advanced cervical cancer: improved pelvic control and survival in RetroEMBRACE, a multicenter cohort study. Radiotherapy and Oncology. 2016. Т. 120. №. 3. С. 428-433. 74. Tamaki T. et al. Dose–volume histogram analysis of composite EQD2 dose distributions using the central shielding technique in cervical cancer radiotherapy. Brachytherapy. 2016. Т. 15. №5. С. 598-606. 75. Tan L.T. et al. Clinical impact of computed tomography-based image-guided brachytherapy for cervix cancer using the tandem-ring applicator - the Addenbrooke's experience. Clinical Oncology. 2009. Т. 21. №3. С. 175-182. 76. Tanderup K. et al. OC-0265: Dose-response for local control in image guided cervix brachytherapy in the retro EMBRACE study. Radiotherapy and Oncology. 2013. Т. 106. С. S104-S105. 77. Thwaites D. I., Verellen D. VorsprungdurchTechnik: evolution, implementation, QA and safety of new technology in radiotherapy. Radiotherapy and Oncology. 2010. Т. 94. №2. С. 125-128. 78. Toita T. et al. Phase II study of concurrent chemoradiotherapy with high-dose-rate intracavitary brachytherapy in patients with locally advanced uterine cervical cancer: efficacy and toxicity of a low cumulative radiation dose schedule. Gynecologic oncology. 2012. Т. 126. №2. С. 211-216. 79. Verdecchia A. et al. Recent cancer survival in Europe: a 2000–02 period analysis of EUROCARE-4 data. The lancet oncology. 2007. Т. 8. №9. С. 784-796. 80. Verellen D. et al. Innovations in image-guided radiotherapy. Nature Reviews Cancer. 2007. Т. 7. №12. С. 949. 81. Viswanathan A. N. et al. Computed tomography versus magnetic resonance imaging-based contouring in cervical cancer brachytherapy: results of a prospective trial and preliminary guidelines for standardized contours. International Journal of Radiation Oncology* Biology* Physics. 2007. Т. 68. №2. С. 491-498. 82. Viswanathan A. N. et al. International brachytherapy practice patterns: a survey of the Gynecologic Cancer Intergroup (GCIG). International Journal of Radiation Oncology* Biology* Physics. 2012. Т. 82. №1. С. 250-255. 83. World Health Organization et al. Global status report on noncommunicable diseases 2014. – World Health Organization, 2014. №. WHO/NMH/NVI/15.1. 84. Zolciak-Siwinska A. et al. Computed tomography–planned high-dose-rate brachytherapy for treating uterine cervical cancer. International Journal of Radiation Oncology* Biology* Physics. 2016. Т. 96. №1. С. 87-92.
: 257

:

Андреева О.Б., Адылханов Т.А., Жабагина А.С., Раисов Д.Т., Уразалина Н.М. Роль 3d-визуализации в программе лучевой терапии рака шейки матки. Обзор литературы // Наука и здравоохранение. 2019. 4 (Т.21). С. 5-19.