Online ISSN: 3007-0244,
Print ISSN:  2410-4280
ПРИЧИНЫ И МЕХАНИЗМЫ РАЗВИТИЯ ГЕМАТОЛОГИЧЕСКИХ ОСЛОЖНЕНИЙ У ПАЦИЕНТОВ С ИМПЛАНТИРОВАННЫМ МЕХАНИЧЕСКИМ УСТРОЙСТВОМ ЛЕВОГО ЖЕЛУДОЧКА
Введение. Хроническая сердечная недостаточность является одной из главных проблем здравоохранения Республики Казахстан, которая требует проведения трансплантации сердца (ТС) для продления жизни пациента. Пересадка сердца не доступна каждому пациенту из-за ограниченного количества доноров сердца. На сегодняшний день альтернативным методом ТС является имплантация вспомогательного механического устройства левого желудочка (left ventricular assist device, LVAD), которая помогает пациентам дожить до пересадки. Однако, лечение с LVAD вызывает риск образования тромба и кровотечения у пациентов с сердечной недостаточностью. Цель. Рассмотреть причины и механизмы развития гематологических осложнений у пациентов с имплантированным механическим устройством левого желудочка LVAD по данным обзора литературы. Стратегия поиска. Поиск научных публикаций осуществляли в поисковых системах: Web of Science, ResearchGate, PubMed, Google Академия, e-library.ru. Определены критерии включения публикаций в обзор литературы – это публикации с полным текстом, на русском и английском языках, со статистически выверенными выводами. Из 73 литературных источников 54 публикации были отобраны в качестве аналитического материала. Результаты. Причиной возникновения тромба и кровотечения является наличие высокого нефизиологического напряжения сдвига (non-physiologic shear stress, NPSS) ротора LVAD, который вращается в диапазоне от 5000 до 12000 оборотов в минуту. Высокое напряжение сдвига способствует повреждению рецепторов гликопротеина (GPIbα, GPVI и GPIIb/IIIa) тромбоцита, системы коагуляции, нарушению гемостаза, а также деградации мультимеров Фактора Фон Виллебранда. Также на сегодняшний день перспективным направлением в этой области является изучение генетического полиморфизма рецепторов тромбоцита, которые могут повлиять на снижение риска тромбообразования и кровотечения при имплантации LVAD. Мутации генов, кодирующих рецепторы, могут привести к изменениям функции тромбоцитов, тем самым оказывая влияние на исход лечения механическим устройством LVAD. Выводы. Фактор Фон Виллебранда и рецепторы гликопротеина на поверхности тромбоцита очень важны для сохранения сбалансированного процесса гемостаза для предотвращения кровотечения и образования тромба у пациентов с имплантированным устройством LVAD.
Мадина Р. Жалбинова 1,2, https://orcid.org/0000-0001-9704-8913 Сауле Е. Рахимова 1, http://orcid.org/0000-0002-8245-2400 Махаббат С. Бекбосынова 3, Салтанат А. Андосова 3, Айнур Р. Акильжанова 1,2, http://orcid.org/0000-0001-6161-8355 1 National Laboratory Astana, Назарбаев Университет, г. Нур-Султан, Республика Казахстан; 2 Евразийский национальный университет имени Л.Н. Гумилева, г. Нур-Султан, Республика Казахстан; 3 АО «Национальный научный кардиохирургический центр», г. Нур-Султан, Республика Казахстан.
1. Габриелян А.В. Современные методы хирургического лечения рефракторной сердечной недостаточности при ишемической болезни сердца // Клиническая хирургия. 2014. № 1.2. С. 52-55. 2. Зординова К.А., Гуламова Г.М., Касымова Л.М., Кадрахунова Ж.К., Бисеитова Г.А. Фармакоэкономический анализ использования Клопидогрела в условиях Казахстана // Вестник АГИУВ. 2011. №3. С. 40-43. 3. Канатбаева А.А. Профилактика и лечение сердечно-сосудистых заболеваний (АГ, ИБС) // Вестник КазНМУ. 2013. №4(1). С. 139-141. 4. МакЛарти А. Механическая поддержка кровообращения и роль устройств механической поддержки левого желудочка в лечении сердечной недостаточности // Clinical Medicine Insights. Cardiology. 2015. №3. С. 17-22. 5. Пя Ю.В., Бекбосынов С.Т., Бекбосынова М.С., Джетыбаева С.К., Андосова С.А., Салов Р.В., Медресова А.Т., Мурзагалиев М.У., Новикова С.П. Механическая поддержка кровообращения при терминальной сердечной недостаточности. Опыт Республики Казахстан // Грудная и сердечно-сосудистая хирургия. 2015. №1. C. 31-36. 6. Пя Ю.В., Бекбосынов С.Т., Бекбосынова М.С., Куатбаев Е.М., Лесбеков Т.Д., Калиев Р.Б., Джетыбаева С.К., Медресова А.Т., Нурмыхаметова Ж.А., Мурзагалиев М.У., Новикова С.П., Капышев Т.С., Смагулов Н.К., Фаизов Л.Р., Вахрушев И.А.,. Андосова С.А., Мырзахметова Г.Ш., Надирбекова Г.Е., Шайсултанова С.Т., Дюсенбина Ж.С. Программа трансплантации сердца в эпоху механической поддержки кровообращения: опыт Республики Казахстан // Журнал имени академика Б.В. Петровского Клиническая и экспериментальная хирургия. 2017. Том 5. №3. С. 49-53. 7. Пя Ю.В., Бекбосынов С.Т., Бекбосынова М.С., Медресова А.Т., Андосова С.А., Джетыбаева С.К., Мурзагалиев М.У., Новикова С.П. Использование современных устройств механической поддержки кровообращения как альтернативы трансплантации сердца у пациентов с терминальной сердечной недостаточностью // Журнал имени академика Б.В. Петровского Клиническая и экспериментальная хирургия. 2017. №1. C. 7-14. 8. Пя. Ю.В., Бекбосынова М. С., Бекбосынов С.Т., Салов Р.В., Джетыбаева С.К., Андосова С.А. Хирургическое лечение хронической сердечной недостаточности - имплантация вспомогательных устройств (искусственные желудочки сердца (LVAD, RVAD, BiVAD), искусственного сердца (TAH) и трансплантация донорского сердца // Протокол. 2013. №18. 9. Ситникова М.Ю., Федотов П.А., Прокопова Л.В. Высокотехнологичные методы лечения хронической сердечной недостаточности // Кардиология. 2017. № 2 (13). C. 104-119. 10. Степаненко А., Романченко О., Дубаев А., Дранишников Н., Швайгер М., Фирэке Ю., Потапов Е., Пасич М., Венг Ю., Хюьлер М., Хетцер Р., Крабач Т. Механическая поддержка кровообращения – опыт самой большой в Европе программы «искусственное сердце» // Вестник экспериментальной и клинической хирургии. 2012. Том 5. № 1. С. 145-153. 11. Aliseda A., Chivukula V.K., McGah P., Prisco A.R., Beckman J.A., Garcia G. J., Mokadam N.A., Mahr C. LVAD Outflow Graft Angle and Thrombosis Risk // ASAIO J. 2017. 63(1). P. 14-23. 12. Ashbrook M., Walenga J. M., Schwartz J., Heroux A., Jeske W. P., Escalante V., Bakhos M. Left ventricular assist device-induced coagulation and platelet activation and effect of the current anticoagulant therapy regimen // Clin Appl Thromb Hemost. 2013. 19(3). P. 249-55. 13. Baghai M., Heilmann C., Beyersdorf F., Nakamura L., Geisen U., Olschewski M., Zieger B. Platelet dysfunction and acquired von Willebrand syndrome in patients with left ventricular assist devices // Eur J Cardiothorac Surg. 2015. 48(3). P. 421-7. 14. Birschmann I., Dittrich M., Eller T., Wiegmann B., Reininger A. J., Budde U., Struber M. Ambient hemolysis and activation of coagulation is different between HeartMate II and HeartWare left ventricular assist devices // J Heart Lung Transplant. 2014. 33(1). P. 80-7. 15. Chen Z., Koenig S.C., Slaughter M.S., Griffith B.P., Wu Z.J. Quantitative Characterization of Shear-Induced Platelet Receptor Shedding: Glycoprotein Ibalpha, Glycoprotein VI, and Glycoprotein IIb/IIIa // ASAIO J. 2018. 64(6). P. 773-778. 16. Chen Z., Mondal N.K., Ding J., Gao J., Griffith B.P., Wu Z.J. Shear-induced platelet receptor shedding by non-physiological high shear stress with short exposure time: glycoprotein Ibalpha and glycoprotein VI // Thromb Res. 2015. 135(4). P. 692-8. 17. Chen Z., Mondal N.K., Ding J., Koenig S.C., Slaughter M.S., Griffith B.P., Wu Z.J. Activation and shedding of platelet glycoprotein IIb/IIIa under non-physiological shear stress // Mol Cell Biochem. 2015. 409(1-2). P. 93-101. 18. Cheng A., Williamitis C.A., Slaughter M.S. Comparison of continuous-flow and pulsatile-flow left ventricular assist devices: is there an advantage to pulsatility? // Ann Cardiothorac Surg. 2014. 3(6). P. 573-81. 19. Chen Z., Zhang J., Kareem K., Tran D., Conway R.G., Arias K., Griffith B.P., Wu Z.J. Device-induced platelet dysfunction in mechanically assisted circulation increases the risks of thrombosis and bleeding // Artif Organs. 2019. 43(8). P. 745-755. 20. Consolo F., Sferrazza G., Motolone G., Contri R., Valerio L., Lembo R., Pozzi L., Della Valle P., De Bonis M., Zangrillo A., Fiore G.B., Redaelli A., Slepian M.J., Pappalardo F. Platelet activation is a preoperative risk factor for the development of thromboembolic complications in patients with continuous-flow left ventricular assist device // Eur J Heart Fail. 2018. 20(4). P. 792-800. 21. Consolo F., Sferrazza G., Motolone G., Pieri M., De Bonis M., Zangrillo A., Redaelli A., Slepian M.J., Pappalardo F. Shear-Mediated Platelet Activation Enhances Thrombotic Complications in Patients With LVADs and Is Reversed After Heart Transplantation // ASAIO J. 2019. 65(4). P. e33-e35 22. Eckman P.M., John R. Bleeding and thrombosis in patients with continuous-flow ventricular assist devices // Circulation. 2012. 125(24). P. 3038-47. 23. Fatullayev J., Samak M., Sabashnikov A., Zeriouh M., Rahmanian P.B., Choi Y. H., Schmack B., Kallenbach K., Ruhparwar A., Eghbalzadeh K., Dohmen P.M., Karck M. et al. Continuous-Flow Left Ventricular Assist Device Thrombosis: A Danger Foreseen is a Danger Avoided // Med Sci Monit Basic Res. 2015. 21: P. 141-4. 24. Garbade J., Bittner H.B., Barten M.J., Mohr F.W. Current trends in implantable left ventricular assist devices // Cardiol Res Pract. 2011. Vol. 2011. P. 1-9. 25. Gurvits G.E., Fradkov E. Bleeding with the artificial heart: Gastrointestinal hemorrhage in CF-LVAD patients // World J Gastroenterol. 2017. 23(22). P. 3945-3953. 26. Hu J., Mondal N.K., Sorensen E.N., Cai L., Fang H.B., Griffith B.P., Wu Z.J. Platelet glycoprotein Ibalpha ectodomain shedding and non-surgical bleeding in heart failure patients supported by continuous-flow left ventricular assist devices // J Heart Lung Transplant. 2014. 33(1). P. 71-9. 27. Jaffer I.H., Fredenburgh J.C., Hirsh J., Weitz J.I. Medical device-induced thrombosis: what causes it and how can we prevent it? // J Thromb Haemost. 2015. P. S72-81. 28. Jaganathan S.K., Supriyanto E., Murugesan S., Balaji A., Asokan M.K. Biomaterials in cardiovascular research: applications and clinical implications // Biomed Res Int. 2014. Vol.2014. P. 1-11. 29. John R., Panch S., Hrabe J., Wei P., Solovey A., Joyce L., Hebbel R. Activation of Endothelial and Coagulation Systems in Left Ventricular Assist Device Recipients // The Annals of Thoracic Surgery. 2009. 88(4). P. 1171-1179. 30. Kadakia S., Moore R., Ambur V., Toyoda Y. Current status of the implantable LVAD // Gen Thorac Cardiovasc Surg. 2016. 64(9). P. 501-8. 31. Klovaite J., Gustafsson F., Mortensen S.A., Sander K., Nielsen L.B. Severely impaired von Willebrand factor-dependent platelet aggregation in patients with a continuous-flow left ventricular assist device (HeartMate II) // J Am Coll Cardiol. 2009. 53(23). P. 2162-7. 32. Koliopoulou A., McKellar S.H., Rondina M., Selzman C.H. Bleeding and thrombosis in chronic ventricular assist device therapy: focus on platelets // Curr Opin Cardiol. 2016. 31(3). P. 299-307. 33. Koliopoulou A., Selzman C.H. Stop the LVAD bleeding // J Thorac Dis. 2017. 9(5). P. E437-E439. 34. Kushnir V.M., Sharma S., Ewald G.A., Seccombe J., Novak E., Wang I.W., Joseph S.M., Gyawali C.P. Evaluation of GI bleeding after implantation of left ventricular assist device // Gastrointest Endosc. 2012. 75(5). P. 973-9. 35. Meyer A.L., Malehsa D., Bara C., Budde U., Slaughter M.S., Haverich A., Strueber M. Acquired von Willebrand syndrome in patients with an axial flow left ventricular assist device // Circ Heart Fail. 2010. 3(6). P. 675-81. 36. Mondal N.K., Sorensen E.N., Hiivala N.J., Feller E.D., Pham S.M., Griffith B.P.,Wu Z.J. Intraplatelet reactive oxygen species, mitochondrial damage and platelet apoptosis augment non-surgical bleeding in heart failure patients supported by continuous-flow left ventricular assist device // Platelets. 2015. 26(6). P. 536-44. 37. Muslem R., Caliskan K., Leebeek F.W.G. Acquired coagulopathy in patients with left ventricular assist devices // J Thromb Haemost. 2018. 16(3). P. 429-440 38. Nascimbene A., Neelamegham S., Frazier O.H., Moake J.L., Dong J.F. Acquired von Willebrand syndrome associated with left ventricular assist device // Blood. 2016. 127(25). P. 3133-41. 39. Nose Y. Heart failure: Continuous-flow LVADs improve clinical outcomes // Nat Rev Cardiol.2010. 7(4). P. 184-6. 40. Pillitteri D., Pilgrimm A.K., Kirchmaier C.M. Novel Mutations in the GPIIb and GPIIIa Genes in Glanzmann Thrombasthenia // Transfus Med Hemother. 2010. 37(5). P. 268-277. 41. Potapov E.V., Ignatenko S., Nasseri B.A., Loebe M., Harke C., Bettmann M., Doller A., Regitz-Zagrosek V., Hetzer R. Clinical significance of PlA polymorphism of platelet GP IIb/IIIa receptors during long-term VAD support // Ann Thorac Surg. 2004. 77(3). P. 869-74. 42. Pya Y., Bekbossynova M., Jetybayeva S., Bekbossynov S., Andossova S., Salov R., Medressova A., Novikova S., Murzagaliyev M. Initial 3-year outcomes with left ventricular assist devices in a country with a nascent heart transplantation program // ESC Heart Fail. 2016. 3(1). p. 26-34. 43. Radovancevic R., Matijevic N., Bracey A.W., Radovancevic B., Elayda M., Gregoric I.D., Frazier O.H. Increased leukocyte-platelet interactions during circulatory support with left ventricular assist devices // ASAIO J. 2009. 55(5). P. 459-64. 44. Schlendorf K., Patel C.B., Gehrig T., Kiefer T.L., Felker G.M., Hernandez A.F., Blue L.J., Milano C.A., Rogers J.G. Thrombolytic therapy for thrombosis of continuous flow ventricular assist devices // J Card Fail. 2014. 20(2). P. 91-7 45. Selgrade B.P., Truskey G.A. Computational fluid dynamics analysis to determine shear stresses and rates in a centrifugal left ventricular assist device // Artif Organs. 2012. 36(4). P. E89-96. 46. Slaughter M.S. Hematologic effects of continuous flow left ventricular assist devices // J Cardiovasc Transl Res. 2010. 3(6). P. 618-24. 47. Slaughter M.S., Sobieski II M. A., Graham J.D., Pappas P.S., Tatooles A.J., Koenig S.C. Platelet activation in heart failure patients supported by the HeartMate II ventricular assist device // Int J Artif Organs. 2011. 34(6). P. 461-8. 48. Steinlechner B., Dworschak M., Birkenberg B., Duris M., Zeidler P., Fischer H., Milosevic L., Wieselthaler G., Wolner E., Quehenberger P., Jilma B. Platelet dysfunction in outpatients with left ventricular assist devices // Ann Thorac Surg. 2009. 87(1). p. 131-7. 49. Suarez J., Patel C.B., Felker G.M., Becker R., Hernandez A.F., Rogers J.G. Mechanisms of bleeding and approach to patients with axial-flow left ventricular assist devices // Circ Heart Fail. 2011. 4(6). P. 779-84 50. Susen S., Rauch A., Van Belle E., Vincentelli A., Lenting P.J. Circulatory support devices: fundamental aspects and clinical management of bleeding and thrombosis // J Thromb Haemost. 2015. 13(10). P. 1757-67 51. Szarszoi O., Maly J., Turek D., Urban M., Skalsky I., Riha H., Maluskova J., Pirk J., Netuka I. Implantation of Left Ventricular Assist Device Complicated by Undiagnosed Thrombophilia // Tex Heart Inst J. 2012. 39(5). P. 615-7. 52. Valerio L., Consolo F., Bluestein D., Tran P., Slepian M., Redaelli A., Pappalardo F. Shear-mediated platelet activation in patients implanted with continuous flow LVADs: A preliminary study utilizing the platelet activity state (PAS) assay // Conf Proc IEEE Eng Med Biol Soc. 2015 Aug. P. 1255-8. 53. Valerio L., Tran P.L., Sheriff J., Brengle W., Ghosh R., Chiu W.C., Redaelli A., Fiore G.B., Pappalardo F., Bluestein D., Slepian M.J. Aspirin has limited ability to modulate shear-mediated platelet activation associated with elevated shear stress of ventricular assist devices // Thromb Res. 2016. Vol. 140. P. 110-117. 54. Vincent F., Rauch A., Loobuyck V., Robin E., Nix C., Vincentelli A., Smadja D.M., Leprince P., Amour J., Lemesle G., Spillemaeker H., Debry N. et al. Arterial Pulsatility and Circulating von Willebrand Factor in Patients on Mechanical Circulatory Support // J Am Coll Cardiol. 2018. 71(19). P. 2106-2118. 55. Wever-Pinzon O., Selzman C.H., Drakos S.G., Saidi A., Stoddard G.J., Gilbert E.M., Labedi M., Reid B.B., et al. Pulsatility and the risk of nonsurgical bleeding in patients supported with the continuous-flow left ventricular assist device HeartMate II // Circ Heart Fail. 2013. 6(3). P. 517-26. 56. Zimpfer D., Netuka I., Schmitto J.D., Pya Y., Garbade J., Morshuis M., Beyersdorf F., Marasco S., Rao V., Damme L., Sood P., Krabatsch T. Multicentre clinical trial experience with the HeartMate 3 left ventricular assist device: 30-day outcomes // Eur J Cardiothorac Surg. 2016. 50(3). P. 548-54. References: 1. Gabrielyan A.V. Sovremennye metody khirurgicheskogo lecheniya refraktornoi serdechnoi nedostatochnosti pri ishemicheskoi bolezni serdtsa [Modern methods of surgical treatment of refractory heart failure in coronary heart disease]. Klinicheskaya khirurgiya [Clinical Surgery]. 2014. № 1.2. pp. 52-55. [in Russia] 2. Zordinova K.A., Gulamova G.M., Kasymova L.M., Kadrakhunova Zh.K., Biseitova G.A. Farmakoekonomicheskii analiz ispol'zovaniya Klopidogrela v usloviyakh Kazakhstana [Pharmacoeconomic analysis of the use of clopidogrel in Kazakhstan]. Vestnik AGIUV [Journal ASIAME]. 2011. №3. pp. 40-43. [in Russia] 3. Kanatbaeva A.A. Profilaktika i lechenie serdechno-sosudistykh zabolevanii (AG, IBS) [Prevention and treatment of cardiovascular diseases (AH, CHD)]. Vestnik KazNMU [ Journal KazNMU]. 2013. №4(1). pp. 139-141. [in Russia] 4. MakLarti A. Mekhanicheskaya podderzhka krovoobrashcheniya i rol' ustroistv mekhanicheskoi podderzhki levogo zheludochka v lechenii serdechnoi nedostatochnosti [Mechanical circulatory support and the role of LVADs in heart failure therapy]. Clinical Medicine Insights. Cardiology. [Clinical Medicine Insights. Cardiology] 2015. №3. pp. 17-22. [in Russia] 5. Pya Yu.V., Bekbosynov S.T., Bekbosynova M.S., Dzhetybaeva S.K., Andosova S.A., Salov R.V., Medresova A.T., Murzagaliev M.U., Novikova S.P. Mekhanicheskaya podderzhka krovoobrashcheniya pri terminal'noi serdechnoi nedostatochnosti. Opyt Respubliki Kazakhstan [Mechanical circulatory support in terminal heart failure. Experience of the Republic of Kazakhstan]. Grudnaya i serdechno-sosudistaya khirurgiya [Thoracic and cardiovascular surgery]. 2015. №1. pp. 31-36. [in Russia] 6. Pya Yu.V., Bekbosynov S.T., Bekbosynova M.S., Kuatbaev E.M., Lesbekov T.D., Kaliev R.B., Dzhetybaeva S.K., Medresova A.T., Nurmykhametova Zh.A., Murzagaliev M.U., Novikova S.P., Kapyshev T.S., Smagulov N.K., Faizov L.R., Vakhrushev I.A.,. Andosova S.A., Myrzakhmetova G.Sh., Nadirbekova G.E., Shaisultanova S.T., Dyusenbina Zh.S. Programma transplantatsii serdtsa v epokhu mekhanicheskoi podderzhki krovoobrashcheniya: opyt Respubliki Kazakhstan [The program of the heart transplantation in the era of mechanical support of blood circulation: the experience of the Republic of Kazakhstan]. Zhurnal imeni akademika B.V. Petrovskogo Klinicheskaya i eksperimental'naya khirurgiya [Journal named after academician B.V. Petrovsky Clinical and experimental surgery.]. 2017. Tom 5. №3. pp. 49-53. [in Russia] 7. Pya Yu.V., Bekbosynov S.T., Bekbosynova M.S., Medresova A.T., Andosova S.A., Dzhetybaeva S.K., Murzagaliev M.U., Novikova S.P. Ispol'zovanie sovremennykh ustroistv mekhanicheskoi podderzhki krovoobrashcheniya kak al'ternativy transplantatsii serdtsa u patsientov s terminal'noi serdechnoi nedostatochnost'yu [The use of modern devices for mechanical support of blood circulation as an alternative to heart transplantation in patients with terminal heart failure]. Zhurnal imeni akademika B.V. Petrovskogo Klinicheskaya i eksperimental'naya khirurgiya [Journal named after Academician B.V. Petrovsky Clinical and experimental surgery.]. 2017. №1. pp. 7-14. [in Russia] 8. Pya. Yu.V., Bekbosynova M. S., Bekbosynov S.T., Salov R.V., Dzhetybaeva S.K., Andosova S.A. Khirurgicheskoe lechenie khronicheskoi serdechnoi nedostatochnosti - implantatsiya vspomogatel'nykh ustroistv (iskusstvennye zheludochki serdtsa (LVAD, RVAD, BiVAD), iskusstvennogo serdtsa (TAH) i transplantatsiya donorskogo serdtsa [Surgical treatment of chronic heart failure - implantation of assistive devices (artificial heart ventricles (LVAD, RVAD, BiVAD), artificial heart (TAH) and donor heart transplantation]. Protokol [Protocol]. 2013. №18. [in Russia] 9. Sitnikova M.Yu., Fedotov P.A., Prokopova L.V. Vysokotekhnologichnye metody lecheniya khronicheskoi serdechnoi nedostatochnosti [High-technological treatments for chronic heart failure]. Kardiologiya [Cardiology.]. 2017. № 2 (13). pp. 104-119. [in Russia] 10. Stepanenko A., Romanchenko O., Dubaev A., Dranishnikov N., Shvaiger M., Fireke Yu., Potapov E., Pasich M., Veng Yu., Khyu'ler M., Khettser R., Krabach T. Mekhanicheskaya podderzhka krovoobrashcheniya – opyt samoi bol'shoi v Evrope programmy «iskusstvennoe serdtse» [Mechanical support of blood circulation - the experience of the largest artificial heart program in Europe]. Vestnik eksperimental'noi i klinicheskoi khirurgii [Journal of experimental and clinical surgery.]. 2012. Tom 5. № 1. pp. 145-153. [in Russia] 11. Aliseda A., Chivukula V.K., McGah P., Prisco A.R., Beckman J.A., Garcia G. J., Mokadam N.A., Mahr C. LVAD Outflow Graft Angle and Thrombosis Risk. ASAIO J. 2017. 63(1). P. 14-23. 12. Ashbrook M., Walenga J. M., Schwartz J., Heroux A., Jeske W. P., Escalante V., Bakhos M. Left ventricular assist device-induced coagulation and platelet activation and effect of the current anticoagulant therapy regimen. Clin Appl Thromb Hemost. 2013. 19(3). P. 249-55. 13. Baghai M., Heilmann C., Beyersdorf F., Nakamura L., Geisen U., Olschewski M., Zieger B. Platelet dysfunction and acquired von Willebrand syndrome in patients with left ventricular assist devices. Eur J Cardiothorac Surg. 2015. 48(3). P. 421-7. 14. Birschmann I., Dittrich M., Eller T., Wiegmann B., Reininger A. J., Budde U., Struber M. Ambient hemolysis and activation of coagulation is different between HeartMate II and HeartWare left ventricular assist devices. J Heart Lung Transplant. 2014. 33(1). P. 80-7. 15. Chen Z., Koenig S.C., Slaughter M.S., Griffith B.P., Wu Z.J. Quantitative Characterization of Shear-Induced Platelet Receptor Shedding: Glycoprotein Ibalpha, Glycoprotein VI, and Glycoprotein IIb/IIIa. ASAIO J. 2018. 64(6). P. 773-778. 16. Chen Z., Mondal N.K., Ding J., Gao J., Griffith B.P., Wu Z.J. Shear-induced platelet receptor shedding by non-physiological high shear stress with short exposure time: glycoprotein Ibalpha and glycoprotein VI. Thromb Res. 2015. 135(4). P. 692-8. 17. Chen Z., Mondal N.K., Ding J., Koenig S.C., Slaughter M.S., Griffith B.P., Wu Z.J. Activation and shedding of platelet glycoprotein IIb/IIIa under non-physiological shear stress. Mol Cell Biochem. 2015. 409(1-2). P. 93-101. 18. Cheng A., Williamitis C.A., Slaughter M.S. Comparison of continuous-flow and pulsatile-flow left ventricular assist devices: is there an advantage to pulsatility? Ann Cardiothorac Surg. 2014. 3(6). P. 573-81. 19. Chen Z., Zhang J., Kareem K., Tran D., Conway R.G., Arias K., Griffith B.P., Wu Z.J. Device-induced platelet dysfunction in mechanically assisted circulation increases the risks of thrombosis and bleeding. Artif Organs. 2019. 43(8). P. 745-755. 20. Consolo F., Sferrazza G., Motolone G., Contri R., Valerio L., Lembo R., Pozzi L., Della Valle P., De Bonis M., Zangrillo A., Fiore G.B., Redaelli A., Slepian M.J., Pappalardo F. Platelet activation is a preoperative risk factor for the development of thromboembolic complications in patients with continuous-flow left ventricular assist device. Eur J Heart Fail. 2018. 20(4). P. 792-800. 21. Consolo F., Sferrazza G., Motolone G., Pieri M., De Bonis M., Zangrillo A., Redaelli A., Slepian M.J., Pappalardo F. Shear-Mediated Platelet Activation Enhances Thrombotic Complications in Patients With LVADs and Is Reversed After Heart Transplantation. ASAIO J. 2019. 65(4). P. e33-e35 22. Eckman P.M., John R. Bleeding and thrombosis in patients with continuous-flow ventricular assist devices. Circulation. 2012. 125(24). P. 3038-47. 23. Fatullayev J., Samak M., Sabashnikov A., Zeriouh M., Rahmanian P.B., Choi Y.H., Schmack B., Kallenbach K., Ruhparwar A., Eghbalzadeh K., Dohmen P.M., Karck M. et al. Continuous-Flow Left Ventricular Assist Device Thrombosis: A Danger Foreseen is a Danger Avoided. Med Sci Monit Basic Res. 2015. 21: P. 141-4. 24. Garbade J., Bittner H.B., Barten M.J., Mohr F.W. Current trends in implantable left ventricular assist devices. Cardiol Res Pract. 2011. Vol. 2011. P. 1-9. 25. Gurvits G.E., Fradkov E. Bleeding with the artificial heart: Gastrointestinal hemorrhage in CF-LVAD patients. World J Gastroenterol. 2017. 23(22). P. 3945-3953. 26. Hu J., Mondal N.K., Sorensen E.N., Cai L., Fang H.B., Griffith B.P., Wu Z.J. Platelet glycoprotein Ibalpha ectodomain shedding and non-surgical bleeding in heart failure patients supported by continuous-flow left ventricular assist devices. J Heart Lung Transplant. 2014. 33(1). P. 71-9. 27. Jaffer I.H., Fredenburgh J.C., Hirsh J., Weitz J.I. Medical device-induced thrombosis: what causes it and how can we prevent it? J Thromb Haemost. 2015. P. S72-81. 28. Jaganathan S.K., Supriyanto E., Murugesan S., Balaji A., Asokan M.K. Biomaterials in cardiovascular research: applications and clinical implications. Biomed Res Int. 2014. Vol.2014. P. 1-11. 29. John R., Panch S., Hrabe J., Wei P., Solovey A., Joyce L., Hebbel R. Activation of Endothelial and Coagulation Systems in Left Ventricular Assist Device Recipients. The Annals of Thoracic Surgery. 2009. 88(4). P. 1171-1179. 30. Kadakia S., Moore R., Ambur V., Toyoda Y. Current status of the implantable LVAD. Gen Thorac Cardiovasc Surg. 2016. 64(9). P. 501-8. 31. Klovaite J., Gustafsson F., Mortensen S.A., Sander K., Nielsen L.B. Severely impaired von Willebrand factor-dependent platelet aggregation in patients with a continuous-flow left ventricular assist device (HeartMate II). J Am Coll Cardiol. 2009. 53(23). P. 2162-7. 32. Koliopoulou A., McKellar S.H., Rondina M., Selzman C.H. Bleeding and thrombosis in chronic ventricular assist device therapy: focus on platelets. Curr Opin Cardiol. 2016. 31(3). P. 299-307. 33. Koliopoulou A., Selzman C.H. Stop the LVAD bleeding // J Thorac Dis. 2017. 9(5). P. E437-E439. 34. Kushnir V.M., Sharma S., Ewald G.A., Seccombe J., Novak E., Wang I.W., Joseph S.M., Gyawali C.P. Evaluation of GI bleeding after implantation of left ventricular assist device. Gastrointest Endosc. 2012. 75(5). P. 973-9. 35. Meyer A.L., Malehsa D., Bara C., Budde U., Slaughter M.S., Haverich A., Strueber M. Acquired von Willebrand syndrome in patients with an axial flow left ventricular assist device. Circ Heart Fail. 2010. 3(6). P. 675-81. 36. Mondal N.K., Sorensen E.N., Hiivala N.J., Feller E.D., Pham S.M., Griffith B.P., Wu Z.J. Intraplatelet reactive oxygen species, mitochondrial damage and platelet apoptosis augment non-surgical bleeding in heart failure patients supported by continuous-flow left ventricular assist device. Platelets. 2015. 26(6). P. 536-44. 37. Muslem R., Caliskan K., Leebeek F.W.G. Acquired coagulopathy in patients with left ventricular assist devices. J Thromb Haemost. 2018. 16(3). P. 429-440 38. Nascimbene A., Neelamegham S., Frazier O.H., Moake J.L., Dong J.F. Acquired von Willebrand syndrome associated with left ventricular assist device. Blood. 2016. 127(25). P. 3133-41. 39. Nose Y. Heart failure: Continuous-flow LVADs improve clinical outcomes. Nat Rev Cardiol. 2010. 7(4). P. 184-6. 40. Pillitteri D., Pilgrimm A.K., Kirchmaier C.M. Novel Mutations in the GPIIb and GPIIIa Genes in Glanzmann Thrombasthenia. Transfus Med Hemother. 2010. 37(5). P. 268-277. 41. Potapov E.V., Ignatenko S., Nasseri B.A., Loebe M., Harke C., Bettmann M., Doller A., Regitz-Zagrosek V., Hetzer R. Clinical significance of PlA polymorphism of platelet GP IIb/IIIa receptors during long-term VAD support. Ann Thorac Surg. 2004. 77(3). P. 869-74. 42. Pya Y., Bekbossynova M., Jetybayeva S., Bekbossynov S., Andossova S., Salov R., Medressova A., Novikova S., Murzagaliyev M. Initial 3-year outcomes with left ventricular assist devices in a country with a nascent heart transplantation program. ESC Heart Fail. 2016. 3(1). p. 26-34. 43. Radovancevic R., Matijevic N., Bracey A.W., Radovancevic B., Elayda M., Gregoric I.D., Frazier O.H. Increased leukocyte-platelet interactions during circulatory support with left ventricular assist devices. ASAIO J. 2009. 55(5). P. 459-64. 44. Schlendorf K., Patel C.B., Gehrig T., Kiefer T.L., Felker G.M., Hernandez A.F., Blue L.J., Milano C.A., Rogers J.G. Thrombolytic therapy for thrombosis of continuous flow ventricular assist devices. J Card Fail. 2014. 20(2). P. 91-7 45. Selgrade B.P., Truskey G.A. Computational fluid dynamics analysis to determine shear stresses and rates in a centrifugal left ventricular assist device. Artif Organs. 2012. 36(4). P. E89-96. 46. Slaughter M.S. Hematologic effects of continuous flow left ventricular assist devices. J Cardiovasc Transl Res. 2010. 3(6). P. 618-24. 47. Slaughter M.S., Sobieski II M. A., Graham J.D., Pappas P.S., Tatooles A.J., Koenig S.C. Platelet activation in heart failure patients supported by the HeartMate II ventricular assist device. Int J Artif Organs. 2011. 34(6). P. 461-8. 48. Steinlechner B., Dworschak M., Birkenberg B., Duris M., Zeidler P., Fischer H., Milosevic L., Wieselthaler G., Wolner E., Quehenberger P., Jilma B. Platelet dysfunction in outpatients with left ventricular assist devices. Ann Thorac Surg. 2009. 87(1). p. 131-7. 49. Suarez J., Patel C.B., Felker G.M., Becker R., Hernandez A.F., Rogers J.G. Mechanisms of bleeding and approach to patients with axial-flow left ventricular assist devices. Circ Heart Fail. 2011. 4(6). P. 779-84 50. Susen S., Rauch A., Van Belle E., Vincentelli A., Lenting P.J. Circulatory support devices: fundamental aspects and clinical management of bleeding and thrombosis. J Thromb Haemost. 2015. 13(10). P. 1757-67 51. Szarszoi O., Maly J., Turek D., Urban M., Skalsky I., Riha H., Maluskova J., Pirk J., Netuka I. Implantation of Left Ventricular Assist Device Complicated by Undiagnosed Thrombophilia. Tex Heart Inst J. 2012. 39(5). P. 615-7. 52. Valerio L., Consolo F., Bluestein D., Tran P., Slepian M., Redaelli A., Pappalardo F. Shear-mediated platelet activation in patients implanted with continuous flow LVADs: A preliminary study utilizing the platelet activity state (PAS) assay. Conf Proc IEEE Eng Med Biol Soc. 2015 Aug. P. 1255-8. 53. Valerio L., Tran P.L., Sheriff J., Brengle W., Ghosh R., Chiu W.C., Redaelli A., Fiore G.B., Pappalardo F., Bluestein D., Slepian M.J. Aspirin has limited ability to modulate shear-mediated platelet activation associated with elevated shear stress of ventricular assist devices. Thromb Res. 2016. Vol. 140. P. 110-117. 54. Vincent F., Rauch A., Loobuyck V., Robin E., Nix C., Vincentelli A., Smadja D.M., Leprince P., Amour J., Lemesle G., Spillemaeker H., Debry N. et al. Arterial Pulsatility and Circulating von Willebrand Factor in Patients on Mechanical Circulatory Support. J Am Coll Cardiol. 2018. 71(19). P. 2106-2118. 55. Wever-Pinzon O., Selzman C.H., Drakos S.G., Saidi A., Stoddard G.J., Gilbert E.M., Labedi M., Reid B.B., et al. Pulsatility and the risk of nonsurgical bleeding in patients supported with the continuous-flow left ventricular assist device HeartMate II. Circ Heart Fail. 2013. 6(3). P. 517-26. 56. Zimpfer D., Netuka I., Schmitto J.D., Pya Y., Garbade J., Morshuis M., Beyersdorf F., Marasco S., Rao V., Damme L., Sood P., Krabatsch T. Multicentre clinical trial experience with the HeartMate 3 left ventricular assist device: 30-day outcomes. Eur J Cardiothorac Surg. 2016. 50(3). P. 548-54.
Количество просмотров: 1053

Ключевые слова:

Категория статей: Обзор литературы

Библиографическая ссылка

Жалбинова М.Р., Рахимова С.Е., Бекбосынова М.С., Андосова С.А., Акильжанова А.Р. Причины и механизмы развития гематологических осложнений у пациентов с имплантированным механическим устройством левого желудочка // Наука и Здравоохранение. 2020. 1 (Т.22). С. 5-16. doi:10.34689/SH.2020.22.1.001

Авторизируйтесь для отправки комментариев