Introduction: Rheumatoid arthritis (RA) is characterized by autoimmune inflammation affecting the joints and the entire body. The prevalence of RA in the world is 0.5-1%, but this indicator varies depending on geographical regions. The etiology of RA is still unknown. The relationship between endogenous and exogenous factors is confirmed by a number of studies. One of the culprits of the development of rheumatoid arthritis and the leading endogenous factors is genetic predisposition, which is a broad subject of study today. Aim: To demonstrate the relevance of the subject of studying genetic associations with a predisposition to rheumatoid arthritis to the scientific and practical medical community of Kazakhstan. Search strategy: The presented review article was written as part of a study on the AP08052703 project "Determination of microbiomic and genomic biomarkers of rheumatoid arthritis in the Kazakhstan population". Information search was carried out in the PubMed, Trip Database, EMBASE, Medline, Elsiever, GoogleScholar databases. A total of 206 literary sources were found, 100 of which met the selection criteria and were included in this review. The inclusion criteria: full-text articles published in English and Russian mainly during the last 5 years. However, for a detailed description of the basic knowledge and mechanisms, earlier sources were also used. Exclusion criteria: inappropriate sources, incomplete articles, duplicates, abstracts. Results and conclusion: Currently, more than 100 loci of HLA and non-HLA genes of RA have been studied. In this article, we tried to focus on the most widely studied or pathogenetically leading genes associated with a high risk of developing RA. The study of genetic predisposition to RA, certainly, requires further extensive research. For our part, we hope that our work will complement the data on the pathogenesis of RA and the role of genetic markers in the development of this pathology.
*Argul A. Issilbayeva1,2, Bayan A. Ainabekova2 1 Nazarbayev University, Laboratory of Human Microbiome and Longevity, Center for Life Sciences, National Laboratory, Astana, Nur-Sultan, the Republic of Kazakhstan; 2 NJSC «Astana Medical University», Department of Internal Medicine with the Course of Gastroenterology, Endocrinology and Pulmonology, Nur-Sultan, the Republic of Kazakhstan.
1. Abbasifard M., Imani D., Bagheri-Hosseinabadi Z. PTPN22 gene polymorphism and susceptibility to rheumatoid arthritis (RA): Updated systematic review and meta-analysis // J Gene Med. 2020 Sep. 22(9): e3204. P. 1–12. 2. Allam I., Gharnaout M., Louahchi S. et al. Association Study of PTPN22 (rs2476601) and PADI4 (rs2240340) Polymorphisms with Rheumatoid Arthritis in Algerian Population // J. Clin. Cell. Immunol. 2020. Vol. 1, №1.p29. 3. Aslam M.M., Jalil F., John P. et al. A sequencing study of CTLA4 in Pakistani rheumatoid arthritis cases // PLoS One. 2020 Sep 18;15(9): e0239426. 4. Arita K., Shimizu T., Hashimoto H. et al. Structural basis for histone N-terminal recognition by human peptidylarginine deiminase 4// Proc Natl Acad Sci U S A. 2006 Apr 4;103(14). P. 5291-6. 5. Arshad M., Bhatti A., John P. et al. T cell activation Rho GTPase activating protein (TAGAP) is upregulated in clinical and experimental arthritis // Cytokine. 2018 Apr;104. P. 130-135. 6. Belizaire R., Komanduri C. et al. Characterization of synaptogyrin 3 as a new synaptic vesicle protein // J Comp Neurol. 2004 Mar 8;470(3). P. 266-81. 7. Burr M.L., Naseem H., Hinks A. PADI4 genotype is not associated with rheumatoid arthritis in a large UK Caucasian population // Ann Rheum Dis. 2010 Apr;69(4). P. 666-70. 8. Chang X. et al. PADI2 Is Significantly Associated with Rheumatoid Arthritis. 2013. Vol. 8, № 12. 9. Chatzikyriakidou A., Voulgari P.V., Lambropoulos A. et al. Validation of the TAGAP rs212389 polymorphism in rheumatoid arthritis susceptibility // Joint Bone Spine. 2013 Oct;80(5). P. 543-4. 10. Chen R., Wei Y., Cai Q. et al. The PADI4 gene does not contribute to genetic susceptibility to rheumatoid arthritis in Chinese Han population // Rheumatol Int. 2011 Dec;31(12). P. 1631-4. 11. Cheng J., Zhang H. et al. Peptidylarginine deiminase type 4 and methyl-CpG binding domain 4 polymorphisms in Chinese patients with rheumatoid arthritis // J Rheumatol. 2012 Jun;39(6). P. 1159-65. 12. Chung I.M., Ketharnathan S. et al. Rheumatoid Arthritis: The Stride fr om Research to Clinical Practice // Int J Mol Sci. 2016 Jun 8;17(6). P. 900. 13. Coz C., Nolan B.E., Trofa M. et al. Cytotoxic T-Lymphocyte-Associated Protein 4 Haploinsufficiency-Associated Inflammation Can Occur Independently of T-Cell Hyperproliferation // Front Immunol. 2018 Jul 24;9. P. 1715. 14. Danila M.I., Laufer V.A., Reynolds R.J. et al. Dense Genotyping of Immune-Related Regions Identifies Loci for Rheumatoid Arthritis Risk and Damage in African Americans // Mol Med. 2017 Sep;23. P. 177-187. 15. Demoruelle M.K., Deane K.D., Holers V.M. When and wh ere does inflammation begin in rheumatoid arthritis? // Curr Opin Rheumatol. 2014 Jan;26(1). P. 64-71. 16. Dittmer J. The biology of the Ets1 proto-oncogene// Mol Cancer. 2003 Aug 20;2. P. 29. 17. Edilova M.I., Abdul-Sater A.A. Watts T.H. TRAF1 Signaling in Human Health and Disease // Front Immunol. 2018 Dec 18;9. P. 2969. 18. Ekwall A.K., Whitaker J.W., Hammaker D. et al. The Rheumatoid Arthritis Risk Gene LBH Regulates Growth in Fibroblast-like Synoviocytes // Arthritis Rheumatol. 2015 May;67(5). P. 1193-202. 19. Elgueta R., Benson M.J., de Vries V.C. et al. Molecular mechanism and function of CD40/CD40L engagement in the immune system // Immunol Rev. 2009 May;229(1). P. 152-72. 20. Elshazli R., Settin A. Immunobiology Association of PTPN22 rs2476601 and STAT4 rs7574865 polymorphisms with rheumatoid arthritis: A meta-analysis update // Immunobiology. Elsevier GmbH., 2015. Vol. 220, № 8. P. 1012–1024. 21. Essouma M., Nkeck J.R., Endomba F.T. et al. Epidemiology of rheumatoid arthritis in sub-Saharan Africa: a systematic review and meta-analysis protocol // Syst Rev. 2020 Apr 17;9(1). P. 81. 22. Frisell T., Saevarsdottir S., Askling J. Family history of rheumatoid arthritis: an old concept with new developments // Nat Rev Rheumatol. 2016 Jun;12(6). P. 335-43. 23. Han S., Li Y., Mao Y., Xie Y. Meta-analysis of the association of CTLA-4 exon-1 +49A/G polymorphism with rheumatoid arthritis // Hum Genet. 2005 Oct;118(1). P. 123-32. 24. Golinski M.L., Vandhuick T., Derambure C. et al. Dysregulation of RasGRP1 in rheumatoid arthritis and modulation of RasGRP3 as a biomarker of TNFα inhibitors // Arthritis Res Ther. 2015 Dec 26;17. P. 382. 25. Greenwald R.J., Oosterwegel M.A., van der Woude D. et al. CTLA-4 regulates cell cycle progression during a primary immune response // Eur J Immunol. 2002 Feb;32(2). P. 366-73. 26. Guzma I.P., Navarro-zarza E., Gutie I.A. PADI2 Polymorphisms Are Signi fi cantly Associated with Rheumatoid Arthritis, Autoantibodies Serologic Status and Joint Damage in Women from Southern Mexico. 2021. Vol. 12, № August. P. 1–11. 27. Hayashi S., Matsubara T., Fukuda K. et al. A genome-wide association study identifying the SNPs predictive of rapid joint destruction in patients with rheumatoid arthritis // Biomed Rep. 2021 Mar;14(3). P. 31. 28. Ho Lee Y., Woo J.H., Choi S.J. et al. Association between the rs7574865 polymorphism of STAT4 and rheumatoid arthritis: a meta-analysis // Rheumatol Int. 2010 Mar;30(5). P. 661-6. 29. Ho Y., Bae S., Gyu G. et al. Association between the CTLA-4, CD226, FAS polymorphisms and rheumatoid arthritis susceptibility: A meta-analysis // Hum. Immunol. American Society for Histocompatibility and Immunogenetics, 2015. Vol. 76, № 2–3. P. 83–89. 30. Iatropoulos P., Gardella R., Valsecchi P. et al. Association study and mutational screening of SYNGR1 as a candidate susceptibility gene for schizophrenia. // Psychiatr Genet. 2009 Oct;19(5). P. 237-43. 31. Janz R., Südhof T.C., Hammer R.E. et al. Essential roles in synaptic plasticity for synaptogyrin I and synaptophysin I // Neuron. 1999 Nov;24(3). P. 687-700. 32. Jiang X., Zhou Z., Zhang Y. An updated meta-analysis of the signal transducer and activator of transcription 4 (STAT4) rs7574865 G/T polymorphism and rheumatoid arthritis risk in an Asian population // Scand J Rheumatol. 2014;43(6). P. 477-80. 33. Karami J., Aslani S., Jamshidi A. et al. Genetic implications in the pathogenesis of rheumatoid arthritis; an updated review // Gene. 2019 Jun 20;702. P. 8-16. 34. Kawabe T., Matsushima M., Hashimoto N. et al. CD40/CD40 ligand interactions in immune responses and pulmonary immunity // Nagoya J Med Sci. 2011 Aug;73(3-4). P. 69-78. 35. Knevel R., de Rooy D.P., Gregersen P.K. et al. Studying associations between variants in TRAF1-C5 and TNFAIP3- OLIG3 and the progression of joint destruction in rheumatoid arthritis in multiple cohorts// Ann Rheum Dis. 2012. Vol. 71, № 10. P. 3–6. 36. Kochi Y., Yamada R., Suzuki A. et al. A functional variant in FCRL3, encoding Fc receptor-like 3, is associated with rheumatoid arthritis and several autoimmunities // Nat Genet. 2005 May;37(5). P. 478-85. 37. Kudlyk T., Willett R., Pokrovskaya I.D., Lupashin V. COG6 interacts with a subset of the Golgi SNAREs and is important for the Golgi complex integrity // Traffic. 2013 Feb;14(2). P. 194-204. 38. Kurkó J., Besenyei T. et al. Genetics of rheumatoid arthritis - a comprehensive review // Clin Rev Allergy Immunol. 2013 Oct;45(2). P. 170-9. 39. Laufer V.A., Tiwari H.K., Reynolds R.J. Genetic influences on susceptibility to rheumatoid arthritis in African Americans // Hum Mol Genet. 2019 Mar 1;28(5). P. 858-874. 40. Leng R.X., Di D.S., Ni J. et al. Identification of new susceptibility loci associated with rheumatoid arthritis // Ann Rheum Dis. 2020 Dec;79(12). P. 1565-1571. 41. Li F., Ma X., Du L. et al. Identification of susceptibility SNPs in CTLA-4 and PTPN22 for scleritis in Han Chinese // Clin Exp Immunol. 2019 Aug;197(2). P. 230-236. 42. Li X., Zhang C., Zhang J. et al. Polymorphisms in the CTLA-4 gene and rheumatoid arthritis susceptibility: a meta-analysis // J Clin Immunol. 2012 Jun;32(3). P. 530-9. 43. Liao J., Liang G., Xie S. et al. CD40L demethylation in CD4(+) T cells from women with rheumatoid arthritis // Clin Immunol. 2012 Oct;145(1). P.13-8. 44. Liao K.P., Alfredsson L., Karlson E.W. Environmental influences on risk for rheumatoid arthritis // Curr Opin Rheumatol. 2009 May;21(3). P. 279-83. 45. Lin X., Zhang Y., Chen Q. FCRL3 gene polymorphisms as risk factors for rheumatoid arthritis // Hum Immunol. 2016 Feb;77(2). P. 223-9. 46. Linterman M.A., Denton A.E., Divekar D.P. CD28 expression is required after T cell priming for helper T cell responses and protective immunity to infection // Elife. 2014 Oct 27;3: e03180. 47. Liu D., Liu J., Cui G. Evaluation of the association of UBASH3A and SYNGR1 with rheumatoid arthritis and disease activity and severity in Han Chinese // Oncotarget. 2017 Oct 17;8(61). P. 103385-103392. 48. Liu Y., Helms C., Liao W. et al. A genome-wide association study of psoriasis and psoriatic arthritis identifies new disease loci // PLoS Genet. 2008 Mar28;4(3): e1000041. 49. Lu C., Xu K., Guo H. et al. The relationship of PADI4_94 polymorphisms with the morbidity of rheumatoid arthritis in Caucasian and Asian populations: a meta-analysis and system review // Clin Rheumatol. 2018 Feb;37(2). P. 289-296. 50. Luterek-Puszyńska K., Malinowski D., Paradowska-Gorycka A. et al. CD28, CTLA-4 and CCL5 gene polymorphisms in patients with rheumatoid arthritis // Clin Rheumatol. 2017 May;36(5). P. 1129-1135. 51. Márquez A., Vidal-Bralo L., Rodríguez-Rodríguez L. et al. A combined large-scale meta-analysis identifies COG6 as a novel shared risk locus for rheumatoid arthritis and systemic lupus erythematosus // Ann Rheum Dis. 2017 Jan;76(1). P. 286-294 52. Martinez A., Valdivia A., Pascual-Salcedo D. et al. PADI4 polymorphisms are not associated with rheumatoid arthritis in the Spanish population // Rheumatology (Oxford). 2005 Oct;44(10). P. 1263-6. 53. Mergaert A.M., Bawadekar M., Nguyen T.Q. Reduced Anti-Histone Antibodies, and Increased Risk of Rheumatoid Arthritis Associated with a Single Nucleotide Polymorphism in PADI4 in North Americans // Int J Mol Sci. 2019 Jun 25;20(12). P. 3093. 54. Mil van der Helm-van Mil A.H. et al. An independent role of protective HLA class II alleles in rheumatoid arthritis severity and susceptibility // Arthritis Rheum. 2005 Sep;52(9). P. 2637-44. 55. Mohamed R.H., Pasha H.F., El-shahawy E.E. Influence of TRAF1 / C5 and STAT4 genes polymorphisms on susceptibility and severity of rheumatoid arthritis in Egyptian population // Cell. Immunol. Elsevier Inc., 2012. Vol. 273, № 1. P. 67–72. 56. Mustelin T., Bottini N., Stanford S.M. The Contribution of PTPN22 to Rheumatic Disease // Arthritis Rheumatol. 2019 Apr;71(4). P. 486-495. 57. Myasoedova E., Davis J.M., Crowson C.S., Gabriel S.E. Epidemiology of rheumatoid arthritis: rheumatoid arthritis and mortality // Curr Rheumatol Rep. 2010 Oct;12(5). P. 379-85. 58. Nabi G., Akhter N., Wahid M. et al. Meta-analysis reveals PTPN22 1858C/T polymorphism confers susceptibility to rheumatoid arthritis in Caucasian but not in Asian population // Autoimmunity. 2016;49(3). P. 197-210. 59. Nagata S., Ise T., Pastan I. Fc receptor-like 3 proteins expressed on IL-2 nonresponsive subset of human regulatory T cells // J Immunol. 2009 Jun 15;182(12). P. 7518-26. 60. Newman W.G., Zhang Q., Liu X. Rheumatoid arthritis association with the FCRL3 -169C polymorphism is restricted to PTPN22 1858T-homozygous individuals in a Canadian population // Arthritis Rheum. 2006 Dec;54(12). P. 3820-7. 61. Nishikomori R., Usui T., Wu C.Y. Activated STAT4 has an essential role in Th1 differentiation and proliferation that is independent of its role in the maintenance of IL-12R beta 2 chain expression and signaling // J Immunol. 2002 Oct 15;169(8). P. 4388-98. 62. Okada Y., Wu D., Trynka G. et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery // Nature. 2014 Feb 20;506(7488). P. 376-81. 63. Perkins E.A., Landis D., Causey Z.L. et al. Consortium for the Longitudinal Evaluation of African Americans with Early Rheumatoid Arthritis Investigators. Association of single-nucleotide polymorphisms in CCR6, TAGAP, and TNFAIP3 with rheumatoid arthritis in African Americans // Arthritis Rheum. 2012 May;64(5). P. 1355-8. 64. Plenge R.M., Seielstad M., Padyukov L., Lee A.T. et al. TRAF1-C5 as a risk locus for rheumatoid arthritis--a genomewide study // N Engl J Med. 2007 Sep 20;357(12). P. 1199-209. 65. Plenge R.M., Padyukov L., Remmers E.F. et al. Replication of putative candidate-gene associations with rheumatoid arthritis in >4,000 samples from North America and Sweden: association of susceptibility with PTPN22, CTLA4, and PADI4 // Am J Hum Genet. 2005 Dec. 77(6). P. 1044-60. 66. Plenge R.M., Bridges S.L. Jr. Personalized medicine in rheumatoid arthritis: miles to go before we sleep // Arthritis Rheum. 2011 Mar;63(3). P. 590-3. 67. Prasad P., Kumar A., Gupta R. Caucasian, and Asian specific rheumatoid arthritis risk loci reveal limited replication and apparent allelic heterogeneity in north Indians // PLoS One. 2012;7(2): e31584. 68. Ramírez-bello J. et al. Juvenile rheumatoid arthritis and asthma, but not childhood-onset systemic lupus erythematosus is associated with FCRL3 polymorphisms in Mexicans ଝ // Mol. Immunol. Elsevier Ltd, 2013. Vol. 53, № 4. P. 374–378. 69. Romo-tena J., Gómez-martín D., Alcocer-varela J. Autoimmunity Reviews CTLA-4 and autoimmunity: new insights into the dual regulator of tolerance // Autoimmun. Rev. Elsevier B.V., 2013. P. 1–6. 70. Ruiz-Larrañaga O., Uribarri M., Alcaro M.C. et al. Genetic variants associated with rheumatoid arthritis patients and serotypes in European populations // Clin Exp Rheumatol. 2016 Mar-Apr;34(2). P. 236-41. 71. Shah N.R., Noll B.D., Stevens C.B. et al. Biosemantics guided gene expression profiling of Sjögren's syndrome: a comparative analysis with systemic lupus erythematosus and rheumatoid arthritis // Arthritis Res Ther. 2017 Aug 17. Vol.19(1). P.192. 72. Smolen J.S., Aletaha D., McInnes I.B. Rheumatoid arthritis // Lancet. Elsevier Ltd, 2016. Vol. 388, № 10055. P. 2023–2038. 73. Somekh I., Marquardt B., Liu Y. Novel Mutations in RASGRP1 are Associated with Immunodeficiency, Immune Dysregulation, and EBV-Induced Lymphoma // J Clin Immunol. 2018 Aug;38(6). P. 699-710. 74. Stahl E.A., Raychaudhuri S., Remmers E.F. et al. Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci // Nat Genet. 2010 Jun;42(6). P. 508-14. 75. Sun Q., Hua D., Zhou J. et al. LBH mRNA Expression and Polymorphisms in Patients with Rheumatoid Arthritis // Clin Lab. 2018 Oct 31;64(11). 76. Tezenas du Montcel S., Michou L., Petit-Teixeira E. et al. New Classification of HLA – DRB1 Alleles Supports the Shared Epitope Hypothesis of Rheumatoid Arthritis Susceptibility // Arthritis Rheum. 2005 Apr;52(4). P. 1063-8. 77. Thompson S.D., Sudman M., Ramos P.S. The susceptibility loci juvenile idiopathic arthritis shares with other autoimmune diseases extend to PTPN2, COG6, and ANGPT1 // Arthritis Rheum. 2010 Nov;62(11). P. 3265-76. 78. Tong G., Zhang X., Tong W., Liu Y. Association between polymorphism in STAT4 gene and risk of rheumatoid arthritis: a meta-analysis // Hum Immunol. 2013 May;74(5). P. 586-92. 79. Traylor M., Knevel R., Cui J. et al. Genetic associations with radiological damage in rheumatoid arthritis: Meta-analysis of seven genome-wide association studies of 2,775 cases // PLoS One. 2019 Oct 9;14(10): e0223246. 80. Ulrich H., Häupl T., Burmester G.R. The etiology of rheumatoid arthritis // J. Autoimmun. Elsevier, 2020. № December 2019. P. 102400. 81. Valeria Román-Fernández I.V., García-Chagollán M., Cerpa-Cruz S. et al. Assessment of CD40 and CD40L expression in rheumatoid arthritis patients, association with clinical features and DAS28 // Clin Exp Med. 2019 Nov;19(4). P. 427-437. 82. Verdugo R.A., Castro-Santos P., Gutiérrez M.A., Suazo J. Association analysis in a Latin American population revealed ethnic differences in rheumatoid arthritis-associated SNPs in Caucasian and Asian populations // Sci Rep. 2020 May 12;10(1). P. 78-79. 83. Viatte S., Plant D., Lunt M. et al. Investigation of rheumatoid arthritis genetic susceptibility markers in the early rheumatoid arthritis study further replicates the TRAF1 association with radiological damage // J Rheumatol. 2013 Feb;40(2). P. 144-56. 84. Vos T. et al. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990-2013: A systematic analysis for the Global Burden of Disease Study 2013 // Lancet. Elsevier Ltd, 2015. Vol. 386, № 9995. P. 743–800. 85. Walker E.J., Hirschfield G.M., Xu C. et al. CTLA4/ICOS gene variants and haplotypes are associated with rheumatoid arthritis and primary biliary cirrhosis in the Canadian population // Arthritis Rheum. 2009 Apr;60(4). P. 931-7. 86. Wang Y., Wysocka J., Sayegh J. et al. Human PAD4 regulates histone arginine methylation levels via demethylimination // Science. 2004 Oct 8;306(5694). P. 279-83. 87. Zamanpoor M. The genetic pathogenesis, diagnosis and therapeutic insight of rheumatoid arthritis // Clin Genet. 2019 May;95(5). P. 547–557. 88. Zhang Y., Bo L., Zhang H. et al. E26 transformation-specific-1 (ETS1) and WDFY family member 4 (WDFY4) polymorphisms in Chinese patients with rheumatoid arthritis // Int J Mol Sci. 2014 Feb 17;15(2). P. 2712-21. 89. Zhou C., Gao S., Yuan X. et al. Association between CTLA-4 gene polymorphism and risk of rheumatoid arthritis: a meta-analysis // Aging (Albany NY). 2021 Aug 2;13(15). P. 19397-19414. 90. Zhu H., Xia W., Mo X.B. et al. Gene-Based Genome-Wide Association Analysis in European and Asian Populations Identified Novel Genes for Rheumatoid Arthritis // PLoS One. 2016 Nov 29;11(11): e0167212.
Количество просмотров: 64

Ключевые слова:

Библиографическая ссылка

Issilbayeva A.A., Ainabekova B.A. Genetic associations with rheumatoid arthritis susceptibility. Review // Nauka i Zdravookhranenie [Science & Healthcare]. 2022, (Vol.24) 1, pp. 139-146. doi:10.34689/SH.2022.24.1.016