ВОЗМОЖНОСТИ ТЕСТОВ АНТИГЕН-СПЕЦИФИЧЕСКОЙ ПРОДУКЦИИ ЦИТОКИНОВ ДЛЯ ДИФФЕРЕНЦИАЛЬНОЙ ДИАГНОСТИКИ АКТИВНОГО ТУБЕРКУЛЕЗА И ЛАТЕНТНОЙ ТУБЕРКУЛЕЗНОЙ ИНФЕКЦИИ
Введение. В обзоре рассматриваются патогенетически значимые цитокиновые биомаркеры для дифференциальной диагностики латентной туберкулезной инфекции и активного туберкулеза. Цель: Целью данного обзора является анализ возможностей тестов антиген-специфической продукции цитокинов, помимо теста антиген-специфической продукции интерферона-гамма (IFN-γ), для дифференциальной диагностики активного туберкулеза (АТБ) и латентной туберкулезной инфекции (ЛТИ). Необходимость такого анализа определяется ограниченными возможностями теста антиген-специфического высвобождения IFN-γ (IGRA) для дифференцировки ЛТИ и АТБ. Стратегия поиска: Обзор был проведен с использованием электронных баз данных (Google Scholar, PubMed, Scopus, Cochrane Library) для выявления публикаций, исследующих возможности тестов антиген-специфической продукции цитокинов в качестве диагностического инструмента для дифференциальной диагностики ЛТИ и АТБ. Глубина поиска составила 15 лет с 2005 по 2020 г. Критериями включения являлись: полнотекстовые публикации, оценивающие антиген-специфическую продукцию одного или нескольких цитокинов как при стимуляции «традиционными» иммунодоминантными антигенами (ESAT-6 и CFP-10) так и другими антигенами Mycobacterium tuberculosis, включая фазозависимые. Критериями исключения были: публикации, оценивающие продукцию только одного антиген-специфического IFN-γ; статьи, в которых лица контрольной группы не были достоверно проверены на наличие ЛТИ; статьи, анализирующие нестимулированную продукцию цитокинов; статьи, в которых не был выявлен дифференцирующий потенциал исследуемых цитокинов. Результаты: Наиболее изучаемыми цитокинами, как по отдельности, так и в комбинации были IFN-γ, опухоль-некротизирующий фактор альфа (TNF-α), интерлейкин-2 (IL-2), интерферон-индуцируемый белок-10 (IP-10), интерлейкин-13 (IL-13), интерлейкин-10 (IL-10). Различия в полученных результатах, видимо, связаны с использованием различных лабораторных методик оценки уровня антиген-специфической продукции цитокинов (время инкубации, формат считывания результатов, формулы расчета концентрации и т.д.), генетическими особенностями исследуемой популяции, а также, с использованием антигенов Mycobacterium tuberculosis (МБТ), обладающих различной иммунодоминантностью. Выводы: Несколько цитокинов показали перспективность в качестве фазозависимых биомаркеров для дифференциальной диагностики ЛТИ и АТБ. При этом, использование комбинации цитокинов улучшает диагностику. Для выявления достоверного фазозависимого цитокина необходимо унифицировать подходы к методикам оценки продукции цитокинов и комплексу стимулирующих антигенов МБТ. Ключевые слова: цитокины, активный туберкулез, латентная туберкулезная инфекция, Mycobacterium tuberculosis, иммунодиагностика.
Анель С. Тарабаева1, Арайлым А. Абильбаева1 1 НАО «Казахский национальный медицинский университет им. С.Д.Асфендиярова», кафедра общей иммунологии, г. Алматы, Республика Казахстан.
1. Литвинов В.И. «Дремлющие» микобактерии, дормантные локусы, латентная туберкулезная инфекция // Туберкулез и социально значимые заболевания. 2016. № 2. С. 5-13. 2. Симбирцев А.С., Тотолян А.А. Цитокины в лабораторной диагностике // Инфекционные болезни: новости, мнения, обучение. 2015. №2. С.82-98. 3. Balcells M.E., Ruiz-Tagle C., Tiznado C., Garcia P., Naves R. Diagnostic performance of GM-CSF and IL-2 in response to long-term specific-antigen cell stimulation in patients with active and latent tuberculosis infection // Tuberculosis. 2018. V.112. P. 110-119. 4. Biselli R., Mariotti S., Sargentini V., Sauzullo I., Lastilla M., Mengoni F., Vanini V., Girardi E., Goletti D., D’Amelio R. Detection of interleukin-2 in addition to interferon-gamma discriminates active tuberculosis patients, latently infected individuals, and controls // Clinical microbiology and infection: the official publication of the European Society of Clinical Microbiology and Infectious Diseases. 2010. Vol.16. №8. P. 1282-1284. 5. Borgstrom E., Andersen P., Atterfelt F., Julander I., Kallenius G., Maeurer M., Rosenkrands I., Widfeldt M., Bruchfeld J., Gaines H. Immune responses to ESAT-6 and CFP-10 by FASCIA and multiplex technology for diagnosis of M. tuberculosis infection; IP-10 Is a promising marker // PLoS ONE. 2012. Vol.7, №11. P. e43438. doi: 10.1371/journal.pone.0043438. 6. Cantini F., Nannini C., Niccoli L., Petrone L., Ippolito G., Goletti D. Risk of Tuberculosis Reactivation in Patients with Rheumatoid Arthritis, Ankylosing Spondylitis, and Psoriatic Arthritis Receiving Non-Anti-TNF-Targeted Biologics // Mediators Inflamm. 2017. Vol. 2017. P.e8909834. doi: 10.1155/2017/8909834. 7. Chegou N.N., Detjen A.K., Thiart L., Walters E., Mandalakas A.M., Hesseling A.C., Walzl G. Utility of host markers detected in Quantiferon supernatants for the diagnosis of tuberculosis in children in a high-burden setting // PLoS ONE. 2013. Vol.8. №5. P. e64226. doi.org/10.1371/journal.pone.0064226. 8. Chiappini E., Della Bella C., Bonsignori F., Sollai S., Amedei A., Galli L., Niccolai E., Del Prete G., Singh M., D’Elios M.M. Potential role of M. tuberculosis specific IFN-gamma and IL-2 ELISPOT assays in discriminating children with active or latent tuberculosis // PLoS ONE. 2012. Vol.7. №9. P.e46041. doi: 10.1371/journal.pone.0046041. 9. Chung W.Y., Lee K.S., Jung Y.J., Lee H.L., Kim Y.S., Park J.H., Sheen S.S., Park K.J. A TB antigen-stimulated CXCR3 ligand assay for the diagnosis of active pulmonary TB // Chest. 2014. Vol.146. № 2. P. 283- 291. doi: 10.1378/chest.13-1855. 10. Cilloni L., Fu H., Vesga J.F., Dowdy D., Pretorius C., Ahmedov S., Nair S.A., Mosneaga A., Masini E., Sahu S., Arinaminpathy N. The potential impact of the COVID-19 pandemic on the tuberculosis epidemic a modelling analysis // E Clinical Medicine. 2020. Vol. 28. P. 100603. doi: 10.1016/j.eclinm.2020.100603. 11. Comella-Del-Barrio P., Abellana R., Villar-Hernandez R., Coute M.D.J., Mingels B.S., Aliaga L.C., Narcisse M., Gautier J., Ascaso C., Latorre I., Dominguez J., Perez-Porcuna T.M. A model based on the combination of IFN-γ, IP-10, ferritin and 25- hydroxyvitamin D for discriminating latent fr om active tuberculosis in children // Frontiers in Microbiology. 2019. Vol. 10. P.e1855. doi.org/10.3389/fmicb.2019.01855. 12. Connell T.G., Curtis N., Ranganathan S.C., Buttery J.P. Performance of a whole blood interferon gamma assay for detecting latent infection with Mycobacterium tuberculosis in children // Thorax. 2006.Vol.61. №7. P.616-620. doi: 10.1136/thx.2005.048033. 13. Day C.L., Abrahams D.A., Lerumo L., Janse van Rensburg E., Stone L., O’rieT., Pienaar B., Kock M., Kaplan G., Mahomed H., Dheda K., Hanekom W.A. Functional capacity of Mycobacterium tuberculosis-specific T cell responses in humans is associated with mycobacterial load // J. Immunol. 2011. Vol. 187. P. 2222–2232. doi: 10.4049/jimmunol.1101122. 14. Della Bella C., Spinicci M., Grassi A., Bartalesi F., Benagiano M., Truthmann K., Tapinassi S., Troilo A., D’Elios S., Alnwaisri H. Novel M. tuberculosis specific IL-2 ELISpot assay discriminates adult patients with active or latent tuberculosis // PLoS ONE. 2018. Vol.13. №6. P. e0197825. doi: 10.1371/journal.pone.0197825. 15. Diel R., Goletti D., Ferrara G., Bothamley G., Cirillo D., Kampmann B. Interferongamma release assays for the diagnosis of latent Mycobacterium tuberculosis infection: a systematic review and meta-analysis // European Respiratory Journal. 2011. Vol.37. №1. P. 88-99. doi: 10.1183/09031936.00115110. 16. Dillenbeck T., Gelius E., Fohlstedt J., Ahlborg N. Triple cytokine FluoroSpot analysis of human antigen-specific IFN-γ, IL-17A and IL-22 responses // Cells. 2014. Vol.3 P. 1116-1130. doi:10.3390/cells3041116. 17. Farber J.M. Mig and IP-10: CXC chemokines that target lymphocytes // J Leukoc Biol. 1997. Vol.61. №3. P.246-257. 18. Ferrero E., Biswas P., Vettoretto K., Ferrarini M., Uguccioni M., Piali L., Leone B.E., Moser B., Rugarli C., Pardi R. Macrophages exposed to Mycobacterium tuberculosis release chemokines able to recruit selected leucocyte subpopulations: focus on  cells // Immunology. 2003. Vol. 108. P.365-374. 19. Flynn J.L., Chan J. Immunology of tuberculosis // Annu Rev Immunol. 2001. Vol.19. P. 93-129. 20. Frahm M., Goswami N.D., Owzar K., Hecker E., Mosher A., Cadogan E. Discriminating between latent and active tuberculosis with multiple biomarker responses // Tuberculosis. 2011. Vol.91 №3. P. 250-256. doi: 10.1016/j.tube.2011.02.006. 21. Gourgouillon N., De Lauzanne A., Cottart C.H., Curis E., Debord C., Guerin-El Khourouj V. TNF-alpha/IL-2 ratio discriminates latent from active tuberculosis in immunocompetent children: A pilot study // Pediatric Research. 2012. Vol.72. №4. P.370-374. doi:10.1038/pr.2012.89. 22. Hofland R.W., Bossink A.W.J., Nierkens S., Paardekooper S.P., Broek B.T., Lammers J.J., Haeften I., Thijsen S.F. Quantiferon-plus Does Not Discriminate Between Active and Latent Tuberculosis // Infectious diseases (London, England). 2018. Vol.50. №6. P. 479-482. doi: 10.1080/23744235.2018.1425550. 23. Houben R., Dodd P.J. The global burden of latent tuberculosis infection: a re-estimation using mathematical modelling // PLoS Med. 2016. Vol.13. №10. P.e1002152. doi: 10.1371/journal.pmed.1002152. 24. Hur Y.G., Gorak-Stolinska P., Ben-Smith A., Lalor M.K., Chaguluka S., Dacombe R. Combination of cytokine responses indicative of latent TB and active TB in Malawian adults // PLoS ONE. 2013. Vol.8. №11. P.e79742. doi: 10.1371/journal.pone.0079742. 25. Jamil B., Shahid F., Hasan Z., Nasir N., Razzaki T., Dawood G., Hussain R. Interferon gamma/IL10 ratio defines the disease severity in pulmonary and extra pulmonary tuberculosis // Tuberculosis. 2007. Vol.87. № 4. P.279-287. doi: 10.1016/j.tube.2007.03.004. 26. Jenum S., Dhanasekaran S., Ritz C., Macaden R., Doherty T.M., Grewal H.M. Added value of IP-10 as a read-out of Mycobacterium tuberculosis: specific immunity in young children // Pediatric Infectious Disease Journal. 2016. Vol.35. №12. P.1336-1338. 27. Jeong Y.H., Hur Y.G., Kim S., Cho J.E., Chang J., Shin S.J., Lee H., Kang Y.A., Cho S-N., Ha S-J. Discrimination between active and latent tuberculosis based on ratio of antigen-specific to mitogen-induced IP-10 production // Journal of Clinical Microbiology. 2015. Vol. 53. №2. P. 504-510. doi: 10.1128/JCM.02758-14. 28. Jeong Ji-A., Oh Jeong-Il Alanine dehydrogenases in mycobacteria // Journal of microbiology. 2019. Vol.57. №2. P.81-92. 29. Ji D.X., Yamashiro L.H., Chen K.J., Mukaida N., Kramnik I., Darwin H.K., Vance R.E. Type I interferon-driven susceptibility to Mycobacterium tuberculosis is mediated by IL-1Ra // Nature Microbiology. 2019. Vol.4. P.2128-2135. 30. Kamakia R., Kiazyk S., Waruk J., Meyers A., Ochanda J., Ball T.B. Potential biomarkers associated with discrimination between latent and active pulmonary tuberculosis // International Journal of Tuberculosis and Lung Disease. 2017. Vol.21. №3. P.278-285. doi: 10.5588/ijtld.16.0176. 31. Kassa D., de Jager W., Gebremichael G., Alemayehu Y., Ran L., Fransen J., Wolday D., Messele T., Tegbaru B., Ottenhoff T.H.M., Baarle D. The effect of HIV coinfection, HAART and TB treatment on cytokine/chemokine responses to Mycobacterium tuberculosis (Mtb) antigens in active TB patients and latently Mtb infected individuals // Tuberculosis. 2016. Vol. 96. P.131-140. doi: 10.1016/j.tube.2015.05.015. 32. Kathamuthu G.R., Moideen K., Bhaskaran D., Sekar G., Sridhar R., Vidyajayanthi B. Reduced systemic and mycobacterial antigen-stimulated concentrations of IL-1β and IL18 in tuberculous lymphadenitis // Cytokine. 2017. Vol.90. P. 66-72. 33. Kaufmann S.H. How can immunology contribute to the control of tuberculosis? // Nat Rev Immunol. 2001. Vol.1. P.20-30. doi: 10.1038/35095558. 34. Khalifian S., Raimondi G., Brandacher G. The use of Luminex assays to measure cytokines // J Invest Dermatol. 2015. Vol.135, №4. P. 1-5. doi: 10.1038/jid.2015.36. 35. Kim S., Lee H., Kim H., Kim Y., Cho J.E., Jin H., Kim D.Y., Ha S.J., Kang Y.A., Cho S.N. Diagnostic performance of a cytokine and IFN-gamma-induced chemokine mRNA assay after mycobacterium tuberculosis-specific antigen stimulation in whole blood from infected individuals // The Journal of molecular diagnostics. 2015. Vol.17. №1. P. 90-99. doi: 10.1016/j.jmoldx.2014.08.005. 36. Kim J.Y., Park J.H., Kim M.C., Cha H.H., Jeon N.Y., Park S.Y., Kim M-J., Chong Y.P., Lee S-O., Choi S-H., Kim Y.S., Woo J.H., Kim S-H. Combined IFN-gamma and TNF-alpha release assay for differentiating active tuberculosis from latent tuberculosis infection // Journal of Infection. 2018. Vol. 77, №4. P. 314-320. doi: 10.1016/j.jinf.2018.04.011. 37. Kim K., Perera R., Tan D.B., Fernandez S., Seddiki N., Waring J. Circulating mycobacterial-reactive CD4+ T cells with an immunosuppressive phenotype are higher in active tuberculosis than latent tuberculosis infection // Tuberculosis. 2014. Vol.94. №5. P. 494-501. doi: 10.1016/j.tube.2014.07.002. 38. Kumar N.P., Banurekha V.V., Nair D., Babu S. Diminished plasma levels of common gamma-chain cytokines in pulmonary tuberculosis and reversal following treatment // PLoS ONE. 2017. Vol.12. №4. P. e0176495. doi: 10.1371/journal.pone.0176495. 39. Kumar N.P., Gopinath V., Sridhar R., Hanna L.E., Banurekha V.V., Jawahar M.S., Nutman T.B., Babu S. IL-10 dependent suppression of type 1, type 2 and type 17 cytokines in active pulmonary tuberculosis // PLoS ONE. 2013. Vol. 8, №3. P. e59572. doi.org/10.1371/journal.pone.0059572. 40. Kupeli E., Karnak D., Beder S., Kayacan O., Tutkak H. Diagnostic accuracy of cytokine levels (TNF-alpha, IL-2 and IFN-gamma) in bronchoalveolar lavage fluid of smear-negative pulmonary tuberculosis patients // Respiration. 2008. Vol. 75. P.73–78. doi.org/10.1159/000110744. 41. Lalvani A., Pathan A.A., McShane H., Wilkinson R.J., Latif M., Conlon C.P., Pasvol G., Hill A.V. Rapid detection of Mycobacterium tuberculosis infection by enumeration of antigen-specific T cells // American journal of respiratory and critical care medicine. 2001. Vol.163. P.824-828. 42. La Manna M.P., Orlando V., Li Donni P., Sireci G., Di Carlo P., Cascio A., Dieli F., Caccamo N. Identification of plasma biomarkers for discrimination between tuberculosis infection/disease and pulmonary non tuberculosis disease // PLoS One. 2018. Vol. 13, №3. P. e0192664. doi: 10.1371/journal.pone.0192664. 43. Lighter-Fisher J., Peng C.H., Tse D.B. Cytokine responses to QuantiFERON peptides, purified protein derivative and recombinant ESAT-6 in children with tuberculosis // International Journal of Tuberculosis and Lung Disease. 2010. Vol. 14, №12. P. 1548-1555. 44. Ma J., Chen T., Mandelin J., Ceponis A., Miller N.E., Hukkanen M., Ma G.F., Konttinen Y.T. Regulation of macrophage activation // Cell Mol Life Sci. 2003. Vol. 60, № 11. P. 2334-2346. doi: 10.1007/s00018-003-3020-0. 45. Marin N.D., Paris S.C., Velez V.M., Rojas C.A., Rojas M., Garcia L.F. Regulatory T cell frequency and modulation of IFN-gamma and IL-17 in active and latent tuberculosis // Tuberculosis. 2010. Vol.90. №4. P. 252-261. 46. Movahedi B., Mokarram P., Hemmati M., Mosavari N., Zare R., Ardekani L.S., Mostafavi-Pour Z. IFN-gamma and IL-2 responses to recombinant AlaDH against ESAT-6/CFP-10 fusion antigens in the diagnosis of latent versus active tuberculosis infection // Iranian journal of medical sciences. 2017. Vol.42. №3. P.275-283. 47. Nonghanphithak D., Reechaipichitkul W., Namwat W., Naranbhai V., Faksri K. Chemokines additional to IFN-γ can be used to differentiate among Mycobacterium tuberculosis infection possibilities and provide evidence of an early clearance phenotype // Tuberculosis. 2017. Vol.105. P.28-34. 48. Okamoto M., Kawabe T., Iwasaki Y., Hara T., Hashimoto N., Imaizumi K., Hasegawa Y., Shimokata K. Evaluation of interferon-gamma, interferon-gamma-inducing cytokines, and interferon-gamma-inducible chemokines in tuberculous pleural effusions // J Lab Clin Med. 2005. Vol. 145. №2. P. 88-93. doi: 10.1016/j.lab.2004.11.013. 49. Pai M. Spectrum of latent tuberculosis: existing tests cannot resolve the underlying phenotypes // Nat Rev Microbiol. 2010. Vol. 8. №32. P.242. 50. Petrone L., Vanini V., Chiacchio T., Petruccioli E., Cuzzi G., Schinina V., Palmieri F., Ippolito G., Goletti D. Evaluation of IP-10 in Quantiferon-Plus as biomarker for the diagnosis of latent tuberculosis infection // Tuberculosis. 2018. Vol. 111. P. 147-153. doi: 10.1016/j.tube.2018.06.005. 51. Redford P.S., Murray P.J., O'Garra A. The role of IL-10 in immune regulation during M. tuberculosis infection // Mucosal Immunol. 2011. Vol. 4, №3. P. 261-270. doi: 10.1038/mi.2011.7. 52. Rook W., Graham A. Th2 Cytokines in Susceptibility to Tuberculosis // Current Molecular Medicine. 2007. Vol.7. №3. P.327-337. 53. Salgame P., Geadas C., Collins L., Jones-Lopez E., Ellner J.J. Latent Tuberculosis infection-Revisiting and Revising Concepts // Tuberculosis. 2015. Vol. 2015. P.1-11. 54. Salman A.M., Abdel-Ghaffar A.B., El-Sheikh N., Andersen P., Egiza A.O. Evaluation of immunodiagnostic potential of ESAT-6 synthetic peptides mixture in Egyptian pulmonary tuberculosis patients // The Egyptian Journal of Immunology. 2012. Vol. 19. №1. P.19- 30. 55. Sudbury E.L., Otero L., Tebruegge M., Messina N.L., Seas C., Montes M. Mycobacterium tuberculosis-specific cytokine biomarkers for the diagnosis of childhood TB in a TB-endemic setting // Journal of Clinical Tuberculosis and Other Mycobacterial Diseases. 2019. Vol. 16. P. 1-10. doi.org/10.1016/j.jctube.2019.100102 56. Sun Q., Wei W., Sha W. Potential role for Mycobacterium tuberculosis specific IL-2 and IFN-γ responses in discriminating between latent infection and active disease after longterm stimulation // PLoS ONE. 2016. Vol. 11, №12. P. e0166501. doi: 10.1371/journal.pone.0166501. 57. Sutherland J.S., de Jong B.C., Jeffries D.J., Adetifa I.M., Ota M.O.C. Production of TNF-alpha, IL-12(p40) and IL-17 can discriminate between active TB disease and latent infection in a West African cohort // PLoS ONE. 2010. Vol. 5, №8. P. e12365. doi.org/10.1371/journal.pone.0012365. 58. Suzukawa M., Akashi S., Nagai H., Nagase H., Nakamura H., Matsui H., Hebisawa A., Ohta K. Combined analysis of IFN-γ, IL-2, IL-5, IL-10, IL-1ra and MCP-1 in QFT supernatant is useful for istinguishing active tuberculosis from latent infection // PLoS One. 2016. Vol.11, №4. P. e0152483. doi: 10.1371/journal.pone.0152483. 59. Tan X., Khaing Oo M.K., Gong Y., Li Y., Zhu H., Fan X. Glass capillary based microfluidic ELISA for rapid diagnostics // Analyst. 2017. Vol.142, №13. P. 2378-2385. doi: 10.1039/c7an00523g. 60. Tebruegge M., Clifford V., Curtis N. Interferon-gamma release assays should not replace tuberculin skin tests in screening programs for children // Pediatr Infect Dis J. 2016. Vol. 35. №8. P.929. doi: 10.1097/INF.0000000000001195. 61. Tebruegge M., Dutta B., Donath S., Ritz N., Forbes B., Camacho-Badilla K., Clifford V., Zufferey C., Robins-Browne R., Hanekom W., Graham S.M., Connell T., Curtis N. Mycobacteria-specific cytokine responses detect tuberculosis infection and distinguish latent from active tuberculosis // American Journal of Respiratory and Critical Care Medicine. 2015. Vol. 192, №4. P. 485-499. doi.org/10.1164/rccm.201501-0059OC. 62. Teklu T., Kwon K., Wondale B., HaileMariam M., Zewude A., Medhin G. Potential immunological biomarkers for detection of Mycobacterium tuberculosis infection in a setting wh ere M. tuberculosis is endemic, Ethiopia // Infection & Immunity. 2018. Vol. 86. №4. P.e00759-17. doi: 10.1128/IAI.00759-17. 63. Tincati C., Cappione Iii A.J., Snyder-Cappione J.E. Distinguishing latent from active Mycobacterium tuberculosis infection using Elispot assays: looking beyond interferon-gamma // Cells. 2012. Vol.1. №2. P.89-99. doi: 10.3390/cells1020089. 64. Tong X., Lu H., Yu M., Wang G., Han C., Cao Y. Diagnostic value of interferon-gamma-induced protein of 10kDa for tuberculous pleurisy: a meta-analysis // Clinica chimica acta; international journal of clinical chemistry. 2017. Vol. 471. P. 143-149. doi: 10.1016/j.cca.2017.05.034. 65. Wang S., Diao N., Lu C., Wu J., Gao Y., Chen J., Zhou Z., Huang H., Shao L., Jin J., Weng X., Zhang Y., Zhang W. Evaluation of the diagnostic potential of IP-10 and IL-2 as biomarkers for the diagnosis of active and latent tuberculosis in a BCG-vaccinated population // PLoS One. 2012. Vol.7. №12. P. e51338. doi: 10.1371/journal.pone.0051338. 66. Wang F., Hou H., Xu L., Jane M., Peng J., Lu Y. Mycobacterium tuberculosis-specific TNF-α is a potential biomarker for the rapid diagnosis of active tuberculosis disease in Chinese population // PLoS ONE. 2013. Vol.8. №11. P.e79431. doi: 10.1371/journal.pone.0079431. 67. Wergeland I., Pullar N., Assmus J., Ueland T., Tonby K., Feruglio S., Kvale D., Damas J.K., Aukrust P., Mollnes T.E. IP-10 differentiates between active and latent tuberculosis irrespective of HIV status and declines during therapy // Journal of Infection. 2015. Vol. 70. №4. P. 381-39. doi.org/10.1016/j.jinf.2014.12.019. 68. WHO. Global tuberculosis report. – 2020. P.13. 69. World Health Organization. Global strategy and targets for tuberculosis prevention, care and control after 2015. 2013.P.8. 70. Won E-J., Choi J-H., Cho Y-N., Jin H-M., Kee H.J., Park Y-W., Kwon Y-S., Kee S-J. Biomarkers for discrimination between latent tuberculosis infection and active tuberculosis disease // J Infect. 2017. Vol. 74. №3. P. 281-293. doi: 10.1016/j.jinf.2016.11.010. 71. Wu J., Wang S., Lu C., Shao L., Gao Y., Zhou Z., Huang H., Zhang Y., Zhang W. Multiple cytokine responses in discriminating between active tuberculosis and latent tuberculosis infection // Tuberculosis. 2017. Vol. 102. P. 68-75. doi: 10.1016/j.tube.2016.06.001. 72. Yang H., Kruh-Garcia N.A., Dobos K.M. Purified protein derivatives of tuberculin - past, present and future // FEMS Immunology & Medical Microbiology. 2012. Vol.66. №3. P.273-280. 73. You E., Kim M.H., Lee W.I., Kang S.Y. Evaluation of IL-2, IL-10, IL-17 and IP-10 as potent discriminative markers for active tuberculosis among pulmonary tuberculosis suspects // Tuberculosis. 2016. Vol.99. P. 100-108. 74. Zeng G., Zhang G., Chen X. Th1 cytokines, true functional signatures for protective immunity against TB? // Cellular & Molecular Immunology.2018. Vol.15.-P.206-215. References: [1-2] 1. Litvinov V.I. «Dremlyushchie» mikobakterii, dormantnye lokusy, latentnaya tuberkuleznaya infektsiya [“Dormant” mycobacteria, dormant loci, latent tuberculosis infection]. Tuberkulez i sotsial'no znachimye zabolevaniya [Tuberculosis and socially significant diseases]. 2016. № 2. pp. 5-13. [in Russian] 2. Simbirtsev A.S., Totolyan A.A. Tsitokiny v laboratornoy diagnostike [Cytokines in laboratory diagnostics]. Infektsionnye bolezni: novosti, mneniya, obuchenie [Infectious diseases: news, opinions, training]. 2015. №2. pp.82-98. [in Russian]
Количество просмотров: 6

Ключевые слова:

Библиографическая ссылка

Тарабаева А.С., Абильбаева А.А. Возможности тестов антиген-специфической продукции цитокинов для дифференциальной диагностики активного туберкулеза и латентной туберкулезной инфекции // Наука и Здравоохранение. 2022. 3(Т.24). С. 147-158. doi 10.34689/SH.2022.24.3.018 Tarabayeva A., Abilbayeva A. Possibilities of antigen-specific cytokine release essays for differential diagnosis of active and latent tuberculosis infection // Nauka i Zdravookhranenie [Science & Healthcare]. 2022, (Vol.24) 3, pp. 147-158. doi 10.34689/SH.2022.24.3.018 Тарабаева А.С., Абильбаева А.А. Белсенді және жасырын туберкулезді жұқпаның дифференциалды диагностикасы үшін цитокиндердің антиген-спецификалық өнімі бойынша тесттердің мүмкіндіктері // Ғылым және Денсаулық сақтау. 2022. 3 (Т.24). Б. 147-158. doi 10.34689/SH.2022.24.3.018