Online ISSN: 3007-0244,
Print ISSN:  2410-4280
VIRTUAL REALITY EFFICIENCY IN MOTOR AND COGNITIVE REHABILITATION IN PATIENTS AFTER CEREBRAL STROKE: A REVIEW
Introduction. Currently, stroke is considered to be one of the main causes of death and disability, highly contributing to mortality in the world. The critical issue is the rehabilitation process and the subsequent return of the patient to his daily life. Therefore, finding new approaches to recovery of lost functions is a pressing issue. Thanks to three key elements necessary for motor functions training (stimulation repetition, sensory feedback, patient motivation) VR provides an opportunity to train motor skills more effectively and in the same particular context in which they will be executed in real life. Another aspect of VR training sessions is the recovery of cognitive functions such as perception, memory, attention, speech and thinking. Aim. To review publications devoted to virtual reality technology and evaluation of the effectiveness of its application using neuroimaging methods in stroke rehabilitation. Search strategy. The search was performed in the following scientific databases: Scopus, Web of Science, PubMed, Cochrane Library, Google Scholar. The search depth was 20 years. Three sources of literature, dated by 1979, 1981 and 1992 year, were used, because they contain important conceptual information. Criteria for considerations were: reviews, original papers, meta-analyses; full-text open-access publications both in Russian and English languages. Exclusion criteria included low methodological quality and conference proceedings. 56 papers were included in the present review. Results. The use of modern methods of neuroimaging and EEG to assess the effectiveness of classes in virtual reality systems may allow us to build rehabilitation programs to recover the motor and cognitive spheres of patients after a cerebral stroke. Conclusions. A combination of technologies with addition of VR-based intervention may affect results of motor-cognitive recovery and emotional sphere correction at all stages of rehabilitation process and influence further life of patient.
Leonid V. Klimov1, https://orcid.org/0000-0003-1314-3388 Marina A. Shurupova*1,2,3, https://orcid.org/0000-0003-2214-3187 Alina D. Aizenshtein1, https://orcid.org/0000-0001-7442-0903 Alexandra K. Trofimova1, https://orcid.org/0000-0001-6521-9503 Nicolay A. Shamalov1, https://orcid.org/0000-0001-6250-0762 Galina E. Ivanova1,4, https://orcid.org/0000-0003-3180-5525 1 Federal State Budgetary Institution “Federal Center of Brain Research and Neurotechnologies” of the Federal Medical Biological Agency, Moscow, Russia; 2 Lomonosov Moscow State University, Moscow, Russia; 3 TRSC “Russkoe Pole” at Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Health of Russia, Moscow region, Chekhov district, v. Grishenki, Russia; 4 Pirogov Russian National Research Medical University, Moscow, Russia.
1. Adamovich S.V. et al. A virtual reality-based system integrated with fmri to study neural mechanisms of action observation-execution: a proof of concept study // Restorative neurology and neuroscience. 2009. 27(3): 209-223. 2. Afridi A., Malik A.N., Tariq H., Rathore F.A. The emerging role of virtual reality training in rehabilitation // J Pak Med Assoc. 2022. 72(1):188-191. 3. Bang Y.S., Kim H.Y., Lee M.K. Factors affecting the upper limb function in stroke patients //The Journal of the Korea Contents Association. 2009. 9(7): 202-210. 4. Bediou B. et al. Meta-analysis of action video game impact on perceptual, attentional, and cognitive skills // Psychological bulletin. 2018. 144(1): 77. 5. Cameirao M.S. et al. The combined impact of virtual reality neurorehabilitation and its interfaces on upper extremity functional recovery in patients with chronic stroke // Stroke. 2012. 43(10): 2720-2728. 6. Carter A.R. et al. Resting interhemispheric functional magnetic resonance imaging connectivity predicts performance after stroke // Annals of neurology. 2010. 67(3): 365-375. 7. Chernikova L.A. et al. Robotic and mechanotherapeutic technology to restore the functions of the upper limbs: prospects for development // Современные технологии в медицине. 2016. 8(4) (eng):222-230. 8. Cheron G., Petit G., Cheron J., et al. Brain oscillations in sport: toward EEG biomarkers of performance // Front Psychol. 2016;7:246. 9. De Bruyn N. et al. Functional network connectivity is altered in patients with upper limb somatosensory impairments in the acute phase post stroke: A cross-sectional study // PloS one. 2018. 13(10): e0205693 10. Dubovik S. et al. Adaptive reorganization of cortical networks in Alzheimer’s disease // Clinical neurophysiology. 2013. 124(1): 35-43 11. Fadiga L, Craighero L. Electrophysiology of action representation // Clin Neurophysiol. 2004. 21:157–69. 12. Feigin V.L. et al. Global and regional burden of stroke during 1990–2010: findings from the Global Burden of Disease Study 2010 // The Lancet. 2014. 383(9913) 245-255 13. Filimon F., Rieth C.A., Sereno M.I., Cottrell G.W. Observed, executed, and imagined action representations can be decoded from ventral and dorsal areas // Cereb Cortex. 2015. 25(9):3144–58. 14. Fu M.J., Knutson J.S., Chae J. Stroke Rehabilitation Using Virtual Environments // Phys Med Rehabil Clin N Am. 2015. 26(4):747-57 15. Gamito P., Oliveira J., Coelho C., Morais D., Lopes P., Pacheco J., Brito R., Soares F., Santos N., Barata A.F. Cognitive training on stroke patients via virtual reality-based serious games // Disabil Rehabil. 2017. 39(4):385-388. 16. Giuseppe P., et al. Cognitive and cognitive-motor interventions affecting physical functioning: a systematic review // BMC geriatrics. 2011: 1-19. 17. Haywood K.M., Getchell N. Life span motor development. // Human kinetics. 2019. 23(5):e24526 18. Kang Jae Myeong, et al. Cognitive training in fully immersive virtual reality improves visuospatial function and fronto-occipital functional connectivity in a pre-dementia state: A randomized controlled trial. 2020. (preprint) 19. Kalaria R.N., Akinyemi R., Ihara M. Stroke injury, cognitive impairment and vascular dementia // Biochim Biophys Acta. 2016. 1862(5):915-25 20. Khizhnikova A.E., Klochkov A.S., KotovSmolenskiy A.M., Suponeva N.A., Chernikova L.A. Virtual reality as an upper limb rehabilitation approach // Human Physiology 2017. 43(8): 855–862, https://doi.org/10.1134/ s0362119717080035 21. Klimesch W. Alpha-band oscillations, attention, and controlled access to stored information // Trends in cognitive sciences. 2012. 16(12): 606-617 22. Klimesch W. EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis // Brain research reviews. 1999. 29(2-3): 169-195 23. Kwakkel G., van Peppen R., Wagenaar R.C., Wood Dauphinee S., Richards C., Ashburn A., Miller K., Lincoln N., Partridge C., Wellwood I., Langhorne P. Effects of augmented exercise therapy time after stroke: a meta-analysis // Stroke. 2004. 35(11): 2529-39. 24. Levin MF, Weiss PL, Keshner EA. Emergence of virtual reality as a tool for upper limb rehabilitation: incorporation of motor control and motor learning principles. Phys Ther. 2015. 95(3):415-25 25. Liao Y.Y., Chen I.H., Lin Y.J., Chen Y., Hsu W.C. Effects of Virtual Reality-Based Physical and Cognitive Training on Executive Function and Dual-Task Gait Performance in Older Adults With Mild Cognitive Impairment: A Randomized Control Trial // Frontiers in aging neuroscience. 2019. 11: 162. 26. Lin Z. et al. Analysis of central mechanism of cognitive training on cognitive impairment after stroke: Resting-state functional magnetic resonance imaging study // Journal of International Medical Research. 2014. 42(3): 659-668. 27. Lyons A. et al. Stealth attack // Good Practice. 2017. 9: 14. 28. Machado, S., Araújo, F., Paes, F., Velasques, B., Cunha, M., Budde, H., Ribeiro, P.EEG-based brain-computer interfaces: an overview of basic concepts and clinical applications in neurorehabilitation. Reviews in the Neurosciences, 2010. 21(6), 451-468. 29. Maggio, M. G. et al/ R., The growing use of virtual reality in cognitive rehabilitation: fact, fake or vision? A scoping review. Journal of the National Medical Association, 2019. 111(4), 457-463. 30. McEwen S.E., Huijbregts M.P., Ryan J.D, Polatajko H.J. Cognitive strategy use to enhance motor skill acquisition post-stroke: a critical review // Brain Inj. 2009. 23(4): 263-77. 31. Mc Garry L.M.J. The role of the mirror neuron system in bottom-up and top-down perception of human action. Dissertation // Canada: Toronto University Press. 2015: 1-205. 32. Nakamura R., Fujii E. A comparative study of the characteristics of the electroencephalogram when observing a hedge and a concrete block fence // J. Jpn. Inst. Landsc. Archit. 1992. 55: 139–144. doi: 10.5632/jila1934.55.5_139 33. Newell K.M. Motor skill acquisition // Annu Rev Psychol. 1991. 42: 213-37. 34. Oberman L.M., Pineda J.A., Ramachandran V.S. The human mirror neuron system: a link between action observation and social skills // Soc Cogn Affect Neurosci. 2007. 2(1): 62–66 35. Patel M.D. et al. Relationships between long-term stroke disability, handicap and health-related quality of life // Age and Ageing. 2006. 35(3): 273-279. 36. Pavlova M., Lutzenberger W., Sokolov A., Birbaumer N. Dissociable cortical processing of recognizable and non-recognizable biological movement: analyzing gamma MEG activity // Cereb Cortex. 2004. 14:181–8. 37. Perfetti C. La rieducazione motoria dell'Emiplegico. Milano: Ghedini, 1979. 172 с. 38. Regenbrecht H., Hoermann S., McGregoret G., Dixon B., Franz E., Ott C., Hale L., Schubert T., Hoermann J. Visual manipulations for motor rehabilitation //Computers & Graphics 2012. 36(7): 819–834. 39. Riener R., Harders M. Virtual reality in medicine // London: Springer; 2012. 40. de Rooij IJM, van de Port IGL, Meijer J-WG. Effect of virtual reality training on balance and gait ability in patients with stroke: systematic review and meta-analysis. Phys Ther. 2016;96:1905–1918.] 41. Sanes J.N. Motor cortex rules for learning and memory // Curr Biol. 2000. 10(13):R495-7. 42. Schleiger E. et al. Frontal EEG delta/alpha ratio and screening for post-stroke cognitive deficits: the power of four electrodes // International journal of psychophysiology. 2014. 94(1): 19-24 43. Schleiger E. et al. Poststroke QEEG informs early prognostication of cognitive impairment // Psychophysiology. 2017. 54(2): 301-309 44. Sidiakina I.V., Dobrushina O.R., Liadov K.V., Shapovalenko T.V., Romashin O.V. The role of evidence-based medicine in the neurorehabilitation: the innovative technologies (a review) // Voprosy kurortologii, fizioterapii i lechebnoi fizicheskoi kul’tury 2015; 92(3): 53–56, https://doi.org/10.17116/ kurort2015353-56. 45. Shurupova M.A., Aizenshtein A.D., Trofimova A.K., Ivanova G.E. Clinical and anamnestic data that affect the outcome of rehabilitation on virtual reality in patients with stroke // Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova. 2021;121(12‑2):33‑40. (In Russ.). 46. Springer S. et al. Dual‐tasking effects on gait variability: The role of aging, falls, and executive function // Movement disorders: official journal of the Movement Disorder Society. 2006. 21(7): 950-957. 47. Standen P.J., Threapleton K., Richardson A., Connell L., Brown D.J., Battersby S., Platts F., Burton A. A low cost virtual reality system for home based rehabilitation of the arm following stroke: a randomised controlled feasibility trial // Clin Rehabil. 2017. 31(3):340-350. 48. Stanmore E., Stubbs B., Vancampfort D., de Bruin E.D., Firth J. The effect of active video games on cognitive functioning in clinical and non-clinical populations: a meta-analysis of randomized controlled trials // Neurosci. Biobehav. 2017. 78: 34–43. doi: 10.1016/j.neubiorev.2017.04.011 49. Stoykov M. E., Madhavan S. Motor priming in neurorehabilitation // J. Neurol. Phys. Ther. 2015. 39: 33–42. doi: 10.1097/NPT.0000000000000065 50. Tarrant J., Viczko J., Cope H. Virtual Reality for Anxiety Reduction Demonstrated by Quantitative EEG: A Pilot Study // Front. Psychol. 2018. 9:1280. doi: 10.3389/fpsyg.2018.01280 51. Teasell R.W. et al. Rethinking the continuum of stroke rehabilitation // Archives of physical medicine and rehabilitation. 2014. 95(4): 595-596. 52. Tieri G. et al. Virtual reality in cognitive and motor rehabilitation: facts, fiction and fallacies. Expert Rev Med Devices. 2018. 15(2):107-117 53. Tremmel C., Herff C., Krusienski D.J. EEG Movement Artifact Suppression in Interactive Virtual Reality. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, Berlin, Germany, 2019; p. 4576–4579 54. Ulrich R.S. Natural versus urban scenes: some psychophysiological effects // Environ. Behav. 1981. 13: 523–556. doi: 10.1177/0013916581135001 55. Urbin M.A. et al. Resting-state functional connectivity and its association with multiple domains of upper-extremity function in chronic stroke // Neurorehabilitation and neural repair. 2014. 28(8): 761-769 56. Zarka D., Cevallos C., Petieau M., Hoellinger T., Dan B., Cheron G. Neural rhythmic symphony of human walking observation: upside-down and uncoordinated condition on cortical theta, alpha, beta and gamma oscillations // Front Syst Neurosci. 2014. 18(8): 169.
Количество просмотров: 310

Ключевые слова:

Категория статей: Обзор литературы

Библиографическая ссылка

Klimov L.V., Shurupova M.A., Aizenshtein A.D., Trofimova A.K., Shamalov N.A., Ivanova G.E. Virtual reality efficiency in motor and cognitive rehabilitation in patients after cerebral stroke: a review // Nauka i Zdravookhranenie [Science & Healthcare]. 2022, (Vol.24) 5, pp. 149-156. doi 10.34689/SH.2022.24.5.019

Авторизируйтесь для отправки комментариев