Online ISSN: 3007-0244,
Print ISSN:  2410-4280
ОСОБЕННОСТИ ГЕНЕТИЧЕСКОГО ПОЛИМОРФИЗМА НЕАЛКОГОЛЬНОЙ ЖИРОВОЙ БОЛЕЗНИ ПЕЧЕНИ
Актуальность: Глобальная распространенность неалкогольной жировой болезни печени (НАЖБП), а также ее неуклонный рост в последние десятилетия является одной из важных проблем медицинских исследований. Изучение генетической предрасположенности к заболеванию является одной из важных задач по ранней диагностике и профилактике неблагоприятных исходов и смертности . Цель: Обьединить современные сведения о наиболее изученных генетических ассоциациях НАЖБП, которые связаны с восприимчивостью и прогресссированием заболевания. Стратегия поиска: Проведен поиск научных публикаций (мета-анализы, когортные исследования) в поисковых системах E–Library, PubMed, Google Scholar за 2010-2022 г.г. Также проанализированы несколько публикаций, связанных с данной патологией и содержащих первые сведения о генетических аспектах НАЖБП, опубликованные до 2010 года. Ключевые слова для поиска включали «неалкогольная жировая болезнь печени», «эпидемиология», «генетика», «тяжесть течения». В соответствии с алгоритмом отбора литературы анализу подверглись 145 публикации. Результаты и выводы: В данном обзоре рассматривается вопрос распространенности НАЖБП, ее генетических предикторов, влияющих на восприимчивость и прогрессирование заболевания. По данным мета-анализов выявлены несколько генов-кандидатов, напрямую коррелирующие с агрессивным течением и неблагоприятным исходом НАЖБП. Необходимы дальнейшие исследования, которые помогут в поисках стратегических направлений с целью снижения заболеваемости среди всех категорий пациентов с данной патологией. Соответственно, избранное направление является одним из трендов мировых медицинских исследований.
Сауле А. Алиева1, https://orcid.org/0000-0001-5098-9206 Игорь Г. Никитин1, https://orcid.org/0000-0003-1699-0881 Евгений И. Дедов1, https://orcid.org/0000-0002-9118-3708 Ольга А. Эттингер1, https://orcid.org/0000-0002-1237-3731 Лаура А. Пак2, https://orcid.org/0000-0002-5249-3359 Лаура Т. Касым3, https://orcid.org/0000-0003-4448-6455 Куанткан А. Жабагин4, https://orcid.org/0000-0002-4304-5132 Айнур С. Крыкпаева2, http://orcid.org/0000-0001-7701-9832 Асем Р. Махатова2, https://orcid.org/0000-0003-4127-7279 Ақжан Б. Жұматай2, https://orcid.org/0000-0003-4558-5316 Aсель Э. Какытаева2, https://orcid.org/0000-0003-1943-5859 1 Кафедра госпитальной терапии № 2 им. акад. Г.И. Сторожакова, Лечебный факультет ФГАОУ ВО “Российский национальный исследовательский медицинский университет им. Н.И. Пирогова” Минздрава России, Москва, Российская Федерация; 2 НАО «Медицинский университет Семей», г. Семей, Республика Казахстан; 3 НАО «Медицинский Университет Астана», г. Астана, Республика Казахстан; 4 Центр ядерной медицины и онкологии, г. Семей, Республика Казахстан.
1. Драпкина О.М., Ивашкин В.Т. Эпидемиологические особенности неалкогольной жировой болезни печени в России. (Результаты открытого многоцентрового проспективного исследования-наблюдения DIREG L 01903) // Российский журнал гастроэнтерологии, гепатологии, колопроктологии. 2014. 24(4). С. 32-8. https://doi.org/10.20996/1819-6446-2016-12-4-424-429. (Дата обращения: 16.02.2022) 2. Евстифеева  С.Е., Шальнова  С.А., Куценко  В.А., Яровая  Е.Б. и др. Распространенность неалкогольной жировой болезни печени среди населения трудоспособного возраста: ассоциации с социально-демографическими показателями и поведенческими факторами риска (данные ЭССЕ-РФ-2) // Кардиоваскулярная терапия и профилактика. 2022. 21(9). С.33-56. doi:10.15829/1728-8800-2022-33-56 3. Ильченко Л.Ю., Никитин И.Г., Федоров И.Г. COVID-19 и поражение печени // Архивъ внутренней медицины. 2020. 10(3). С.188-197. DOI: 10.20514/2226-6704-2020-10-3-188-197 4. Теплюк Д.А., Семенистая М.Ч., Сороколетов С.М., Лазебник Л.Б., Павлов Ч.С. Факторы риска прогрессирования неалкогольной жировой болезни печени // Экспериментальная и клиническая гастроэнтерология. 2021. 192(8). С. 167–174. DOI:10.31146/1682-8658-ecg-192-8-167-174 5. Топчий Т.Б., Ардатская М.Д., Буторова Л.И., Масловский Л.В., Минушкин О.Н. Особенности состояния кишечника на фоне новой коронавирусной инфекции // Терапевтический архив. 2022. 92(7). С.920–926. DOI: 10.26442/00403660.2022.07.201768 6. Aagaard-Tillery K.M., Grove K., Bishop J., Ke X., Fu Q., McKnight R, Lane R.H. Developmental origins of disease and determinants of chromatin structure: Maternal diet modifies the primate fetal epigenome // J. Mol. Endocrinol. 2008. 41, 91–102. doi:10.1677/JME-08-0025. Epub 2008 May 30. 7. Abul-Husn N.S., Cheng, X., Li A.H., Xin, Y., Schurmann C., Stevis P., Liu Y., Kozlitina J., Stender, S., Wood G.C., et al. A Protein-Truncating HSD17B13 Variant and Protection from Chronic Liver Disease // N. Engl. J. Med. 2018 Mar 22. 378(12):1096-1106. doi:10.1056/NEJMoa1712191. 8. Adams L. a et al. The natural history of nonalcoholic fatty liver disease: a population-based cohort stud. DOI:10.1053/j.gastro.2005.04.014 9. Agius L. Glucokinase and molecular aspects of liver glycogen metabolism // Biochem. J. 2008. 414, 1–18. DOI:10.1042/BJ20080595 10. Ahrens M., Ammerpohl O., von Schonfels W., Kolarova J., Bens S., Itzel T., Teufel A., Herrmann A., Brosch M., Hinrichsen H., et al. DNA methylation analysis in nonalcoholic fatty liver disease suggests distinct disease-specific and remodeling signatures after bariatric surgery // Cell Metab. 2013 Aug 6. 18(2):296-302. doi:10.1016/j.cmet.2013.07.004. 11. Basu Ray S., Smagris E., Cohen J.C., Hobbs H.H. The PNPLA3 variant associated with fatty liver disease (I148M) accumulates on lipid droplets by evading ubiquitylation // Hepatology, 2017. 66, 1111–1124. DOI:10.1002/hep.29273 12. Becker P.P., Rau, M., Schmitt J., Malsch C., Hammer C., Bantel H., Mullhaupt B., Geier A. Performance of Serum microRNAs -122, -192 and -21 as Biomarkers in Patients with Non-Alcoholic Steatohepatitis // PLoS ONE 201 e0142661. DOI10.1371/journal.pone.0142661 13. Baker P.R., Friedman J.E. Mitochondrial role in the neonatal predisposition to developing nonalcoholic fatty liver disease // J. Clin. Investig. 2018. 128, 3692–3703. DOI: 10.1172/JCI120846 14. Bayoumi A., Gronbaek H., George J., Eslam M., The Epigenetic Drug Discovery Landscape for Metabolic-associated Fatty Liver Disease // Trends Genet. TIG 2020, 36, 429–441. doi:10.1016/j.tig.2020.03.003. 15. Beer N.L., Tribble N.D., McCulloch L.J., Roos C., Johnson P.R., Orho-Melander M., Gloyn A.L. The P446L variant in GCKR associated with fasting plasma glucose and triglyceride levels exerts its effect through increased glucokinase activity in liver // Hum. Mol. Genet. 2009, 18, 4081–4088. doi: 10.1093/hmg/ddp357. Epub 2009 Jul 30. 16. Bianco C., Jamialahmadi O., Pelusi S., Baselli G., Dongiovanni P., Zanoni I., Santoro L., Maier S., Liguori A., Meroni M., et al. Non-invasive stratification of hepatocellular carcinoma risk in non-alcoholic fatty liver using polygenic risk scores // J. Hepatol. 2020, 74, 775–782. doi: 10.1016/j.jhep.2020.11.024. Epub 2020 Nov 25. 17. Boren J., Adiels M., Bjornson E., Matikainen N., Soderlund S., Ramo J., Stahlman M., Ripatti P., Ripatti S., Palotie A., et al. Effects of TM6SF2 E167K on hepatic lipid and very low-density lipoprotein metabolism in humans // JCI Insight 2020, 5, e144079. doi: 10.1172/jci.insight.144079. 18. Bricambert J., Alves-Guerra M.C., Esteves P., Prip-Buus C., Bertrand-Michel J. et al. The histone demethylase Phf2 acts as a molecular checkpoint to prevent NAFLD progression during obesity // Nat. Commun. 2018, 9, 2092. doi: 10.1038/s41467-018-04361-y. 19. Bricambert J., Miranda J., Benhamed F., Girard J., Postic C., Dentin R., Salt-inducible kinase 2 links transcriptional coactivator p300 phosphorylation to the prevention of ChREBP-dependent hepatic steatosis in mice // J. Clin. Investig. 2010, 120, 4316–4331. doi: 10.1172/JCI41624. Epub 2010 Nov 15. 20. Brouwers MCGJ., Simons N., Stehouwer CDA, Isaacs A. Non-alcoholic fatty liver disease and cardiovascular disease: assessing the evidence for // Diabetologiа. 2020. 63: 253–260. doi: 10.1007/s00125-019-05024-3. 21. Browning J.D., Szczepaniak L.S., Dobbins R., Nuremberg P. et al. Prevalence of hepatic steatosis in an urban population in the United States: Impact of ethnicity // Hepatology. 2004, 40, 1387–1395.doi:10.1002/hep.20466. 22. Caddeo A., Jamialahmadi, O., Solinas G., Pujia A., Mancina R.M., Pingitore P., Romeo S. MBOAT7 is anchored to endomem branes by six transmembrane domains // J. Struct. Biol. 2019, 206, 349–360. doi: 10.1016/j.jsb.2019.04.006. Epub 2019 Apr 5. 23. Cartier J., Smith T., Thomson J.P., Rose C.M., Khulan B., Heger A. et al. Investigation into the role of the germline epigenome in the transmission of glucocorticoid-programmed effects across generations // Genome Biol. 2018. 19, 50. DOI: 10.1186/s13059-018-1422-4 24. Cordero P., Campion J., Milagro F.I., Martinez J.A. Transcriptomic and epigenetic changes in early liver steatosis associated to obesity: Effect of dietary methyl donor supplementation // Mol. Genet. Metab. 2013, 110, 388395. DOI:10.1016/j.ymgme.2013.08.022 25. Choi J.M., Seo M.H., Kyeong H.H., Kim E., Kim H.S. Molecular basis for the role of glucokinase regulatory protein as the allosteric switch for glucokinase // Proc. Natl. Acad. Sci. USA 2013, 110, 10171–10176. DOI:10.1073/pnas.1300457110 26. Chen W., Chang B., Li L., Chan L. Patatin-like phospholipase domain-containing 3/adiponutrin deficiency in mice is not associated with fatty liver disease // Hepatology 2010, 52, 1134–1142. DOI: 10.1002/hep.23812 27. Chung M.K., Zidar D.A., Bristow M.R., Cameron S.J., Chan T., Harding C.V., Kwon D.H. COVID-19 and Cardiovascular Disease: From Bench to Bedside // Circ Res. 2021 Apr 16. 128(8):1214-1236. doi: 10.1161/CIRCRESAHA.121.317997. 28. Chen X., Zhou P., De L., Li B., Su S. The roles of transmembrane 6 superfamily member 2 rs58542926 polymorphism in chronic liver disease: A meta-analysis of 24,147 subjects. 2019 Aug. 7(8): e824. doi: 10.1002/mgg3.824. 29. Cheung O., Puri P., Eicken C., Contos M.J., Mirshahi F., Maher J.W., Kellum J.M., Min H., LuketicV.A., Sanyal A.J., Nonalcoholic steatohepatitis is associated with altered hepatic MicroRNA expression // Hepatology. 2008, 48, 1810–1820. doi: 10.1002/hep.22569. 30. Cui J., Chen C.H., Lo M.T., Schork N., Bettencourt R., Gonzalez M.P., Bhatt A., Hooker J., Shaffer K., Nelson K.E., et al. Shared genetic effects between hepatic steatosis and fibrosis: A prospective twin study // Hepatology, 2016. 64, 1547–1558. 31. Donati B., Dongiovanni P., Romeo S., Meroni M., McCain M., Miele L., Petta S., Maier S., Rosso C., De Luca L., et al. MBOAT7 rs641738 variant and hepatocellular carcinoma in non-cirrhotic individuals // Sci. Rep. 2017, 7, 4492. doi: 10.1038/s41598-017-04991-0. 31. Donati B., Motta B.M., Pingitore P., Meroni M., Pietrelli A., Alisi A., Petta S., Xing C., Dongiovanni P., del Menico B., et al. The rs2294918 E434K variant modulates patatin-like phospholipase domain-containing 3 expression and liver damage // Hepatology. 2016, 63, 787–798. doi: 10.1002/hep.28370. Epub 2016 Jan 14. 32. Ding R.B., Bao J., Deng C.X. Emerging roles of SIRT1 in fatty liver diseases// Int. J. Biol. Sci. 2017, 13, 852–867. doi: 10.7150/ijbs.19370. eCollection 2017. 33. Ding J., Li M., Wan X., Jin X., Chen S., Yu C., Li Y. Effect of miR-34a in regulating steatosis by targeting PPARalpha expression in nonalcoholic fatty liver disease // Sci. Rep. 2015. 5, 13729. doi: 10.1038/srep13729. 34. Deng X.Q., Chen L.L., Li N.X. The expression of SIRT1 in nonalcoholic fatty liver disease induced by high-fat diet in rats // Liver Int. 2007. 27, 708–715. doi: 10.1111/j.1478-3231.2007.01497.x. 35. Dongiovanni P., Petta S., Maglio C., Fracanzani A.L., Pipitone R. et al. Transmembrane 6 superfamily member 2 gene variant disentangles nonalcoholic steatohepatitis from cardiovascular disease // Hepatology. 2015, 61, 506–514. doi: 10.1002/hep.27490. 36. Ejaz H., Alsrhani A., Zafar A., Javed H., Junaid K., Abdalla A.E., Abosalif K.O.A., Ahmed Z., Younas S. COVID-19 and comorbidities: Deleterious impact on infected patients // J Infect Public Health. 2020 Dec. 13(12):1833-1839. doi: 10.1016/j.jiph.2020.07.014. 37. Eslam M., Valenti L., Romeo S. Genetics and epigenetics of NAFLD and NASH: Clinical impact // J Hepatol. 2018 Feb. 68(2):268–279. doi: 10.1016/j.jhep.2017.09.003. Epub 2017 Nov 6. 38. Esau C., Davis S., Murray S.F., Yu X.X., Pandey S.K., Pear M., Watts L., Booten S.L., Graham M., McKay R. et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting // Cell Metab. 2006, 3. 87–98. doi: 10.1016/j.cmet.2006.01.005. 39. Fuchsberger C., Flannick J., Teslovich T.M., Mahajan A., Agarwala V., Gaulton K.J., Ma C., Fontanillas P., Moutsianas L., McCarthy D.J., et al. The genetic architecture of type 2 diabetes // Nature 2016, 536, 41–47. doi: 10.1038/nature18642. Epub 2016 Jul 11. 40. Gao Y.D., Ding M., Dong X., Zhang J.J., Kursat Azkur A., Azkur D., Gan H., Sun Y.L., Fu W., Li W., Liang H.L., Cao Y.Y., Yan Q., Cao C., Gao H.Y., Brüggen M.C., van de Veen W., Sokolowska M., Akdis M., Akdis C.A. Risk factors for severe and critically ill COVID-19 patients: A review // Allergy. 2021 Feb;76(2):428-455. doi: 10.1111/all.14657 41. Galanopoulos M., Gkeros F., Doukatas A., Karianakis G., Pontas C., Tsoukalas N., Viazis N., Liatsos C., Mantzaris G.J. COVID-19 pandemic: Pathophysiology and manifestations from the gastrointestinal tract // World J Gastroenterol. 2020 Aug 21. 26(31):4579-4588. doi: 10.3748/wjg.v26.i31.4579. 42. Gellert-Kristensen H., Richardson T.G., Davey Smith G., Nordestgaard B.G., Tybjaerg-Hansen A., Stender S. Combined Effect of PNPLA3, TM6SF2, and HSD17B13 Variants on Risk of Cirrhosis and Hepatocellular Carcinoma in the General Population // Hepatology 2020, 72, 845–856. doi: 10.1002/hep.31238. 43. Gellert-Kristensen H., Nordestgaard B.G., Tybjaerg-Hansen A., Stender S. High Risk of Fatty Liver Disease Amplifies the Alanine Transaminase-Lowering Effect of a HSD17B13 Variant // Hepatology 2020, 71, 56–66. doi: 10.1002/hep.30799. Epub 2019 Aug 9. 44. Gemma C., Sookoian S., Alvarinas J., Garcia S.I., Quintana L., Kanevsky D., Gonzalez C.D., Pirola C.J. Maternal pregestational BMI is associated with methylation of the PPARGC1A promoter in newborns // Obesity 2009, 17, 10321039.doi:10.1038/oby.2008.605. Epub 2009 Jan 15. 45. Guenard F., Deshaies Y., Cianflone K., Kral J.G., Marceau P., Vohl M.C. Differential methylation in glucoregulatory genes of offspring born before vs. after maternal gastrointestinal bypass surgery // Proc. Natl. Acad. Sci. USA 2013, 110, 11439–11444doi: 10.1073/pnas.1216959110. Epub 2013 May 28. 46. Gjorgjieva M., Sobolewski C., Dolicka D., Correia de Sousa M., Foti M. miRNAs and NAFLD: From pathophysiology to therapy // Gut 2019, 68, 2065–2079. doi: 10.1136/gutjnl-2018-318146. Epub 2019 Jul 12. 47. Hsu S.H., Wang B., Kota J., Yu J., Costinean S., Kutay H., Yu L., Bai S., La Perle K., Chivukula R.R., et al. Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver // J. Clin. Investig. 2012, 122, 2871–2883. doi: 10.1172/JCI63539. Epub 2012 Jul 23. 48. He S., Mc Phaul C., Li J.Z., Garuti R., Kinch L., Grishin N.V., Cohen J.C., Hobbs H.H. A sequence variation (I148M) in PNPLA3 associated with nonalcoholic fatty liver disease disrupts triglyceride hydrolysis // J. Biol. Chem. 2010. 285, 6706–6715. doi: 10.1074/jbc.M109.064501. Epub 2009 Dec 23. 49. Huang Y., He S., Li J.Z., Seo Y.K., Osborne T.F., Cohen J.C., Hobbs H.H. A feed-forward loop amplifies nutritional regulation of PNPLA3 // Proc. Natl. Acad. Sci. USA. 2010, 107, 7892–7897. doi: 10.1073/pnas.1003585107. 50. Huang Y., Cohen J.C., Hobbs H.H. Expression and characterization of a PNPLA3 protein isoform (I148M) associated with nonalcoholic fatty liver disease // J. Biol. Chem. 2011, 286, 37085–37093. DOI: 10.1074/jbc.M111.290114 51. Hernaez R., McLean J., Lazo M., Brancati F.L., Hirschhorn J.N., Borecki I.B., Harris T.B.; Nguyen T., Kamel I.R. et al. Genetics of Obesity-Related Liver Disease C. Association between variants in or near PNPLA3, GCKR, and PPP1R3B with ultrasound-defined steatosis based on data from the third National Health and Nutrition Examination Survey // Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 2013, 11, 1183–1190.e1182. doi: 10.1016/j.cgh.2013.02.011. 52. Helsley R.N., Varadharajan V., Brown, A.L., Gromovsky, A.D., Schugar, R.C., Ramachandiran I., Fung K., Kabbany M.N., Banerjee R., Neumann C.K. et al. Obesity-linked suppression of membrane-bound O-acyltransferase 7 (MBOAT7) drives non-alcoholic fatty liver disease // eLife 2019, 8, e49882. doi: 10.7554/eLife.49882. 53. Horiguchi Y., Araki M., Motojima K. 17beta-Hydroxysteroid dehydrogenase type 13 is a liver-specific lipid droplet-associated protein // Biochem. Biophys. Res. Commun. 2008, 370, 235–238. doi: 10.1016/j.bbrc.2008.03.063. Epub 2008 Mar 24. 54. Hyun J., Jung Y. DNA Methylation in Nonalcoholic Fatty Liver Disease // Int. J. Mol. Sci. 2020, 21, 9138. doi: 10.3390/ijms21218138. 55. Horie T., Ono K., Horiguchi M., Nishi H., Nakamura T., Nagao K., Kinoshita M., Kuwabara Y., Marusawa H., Iwanaga Y. et al. MicroRNA-33 encoded by an intron of sterol regulatory element-binding protein 2 (Srebp2) regulates HDL in vivo // Proc. Natl. Acad. Sci. USA 2010, 107, 17321–17326. doi: 10.1073/pnas.1008499107. Epub 2010 Sep 20. 56. Yoshitaka H., Hamaguchi M., Kojima T., Fukuda T., Obora A., Fukui M. Non-alcoholic fatty liver disease without overweight and cardiovascular disease: a post hoc analysis of a cohort study // Medicine (Baltimore). 2017. 96: e6712. 57. Jonas W., Schurmann A. Genetic and epigenetic factors determining NAFLD risk // Mol. Metab. 2020, 101111. doi: 10.1016/j.molmet.2020.101111. 58. Yin H., Hu M., Liang X., Ajmo J.M., Li X., Bataller R., Oden G., Stevens S.M., Jr., You M. Deletion of SIRT1 from hepatocytes in mice disrupts lipin-1 signaling and aggravates alcoholic fatty liver // Gastroenterology. 2014, 146, 801–811. doi10.1053/j.gastro.2013.11.008. Epub 2013 Nov 18. 59. Younossi Z.M., Koenig A.B., Abdelatif D., Fazel Y., Henry L., Wymer M. Global epidemiology of nonalcoholic fatty liver disease- Meta-analytic assessment of prevalence, incidence, and outcomes // Hepatology. 2016, Jul. 64(1):73–84. doi: 10.1002/hep.28431. Epub 2016 Feb 22. PMID: 26707365 60. Younossi Z., Anstee QM., Marietti M., Hardy T., Henry L., Eslam M. et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention // Nat Rev Gastroenterol Hepatol. 2018 Jan. 15(1):11–20. doi: 10.1038/nrgastro.2017.109. Epub 2017 Sep 20. 61. Jenkins C.M., Mancuso D.J., Yan W., Sims H.F., Gibson B., Gross R.W. Identification, cloning, expression, and purification of three novel human calcium-independent phospholipase A2 family members possessing triacylglycerol lipase and acylglycerol trans acylase activities // J. Biol. Chem. 2004, 279, 48968–48975. doi: 10.1074/jbc.M407841200. Epub 2004 Sep 10. 62. Yang Z., Wen J., Tao X., Lu B., Du Y., Wang M., Wang X., Zhang W., Gong W., Ling C. et al. Genetic variation in the GCKR gene is associated with non-alcoholic fatty liver disease in Chinese people // Mol. Biol. Rep. 2011, 38, 1145–1150. doi: 10.1007/s11033-010-0212-1. Epub 2010 Jul 13. 63. Yang J., Trepo E., Nahon P., Cao Q., Moreno C., Letouze E., Imbeaud S., Bayard Q., Gustot T., Deviere J. et al. A 17-Beta Hydroxysteroid Dehydrogenase 13 Variant Protects From Hepatocellular Carcinoma Development in Alcoholic Liver Disease // Hepatology. 2019, 70, 231–240. doi: 10.1002/hep.30623. Epub 2019 Apr 25. 64. Kammel A., Saussenthaler S., Jahnert M., Jonas W., Stirm L., Hoeflich A., Staiger H., Fritsche A., Haring H.U., Joost H.G., et al. Early hypermethylation of hepatic Igfbp2 results in its reduced expression preceding fatty liver in mice // Hum. Mol. Genet. 2016, 25, 2588–2599. doi: 10.1093/hmg/ddw121. Epub 2016 Apr 28. 65. Kiarash Riazi, Hassan Azhari, Charette J.H., Underwood F.E., James A. King, Elnaz Ehteshami Afshar et al. The prevalence and incidence of NAFLD worldwide: a systematic review and meta-analysis. doi.org/10.1016/S2468-1253(22)00165-0]. 66. Kotronen A., Yuki-Jarvinen H. Fatty liver: a new component of the metabolic syndrome. Arteriosclerosis. Thrombus // Vask. biol. 2008; doi: 10.1161/ATVBAHA.107.147538. Epub 2007 Aug 9 67. Kozlitina J., Smagris E., Stender S., Nordestgaard B.G., Zhou H.H., Tybjaerg-Hansen A., Vogt T.F., Hobbs H.H., Cohen J.C. Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease // Nat. Genet. 2014, 46, 352–356. doi: 10.1038/ng.2901. 68. Kozlitina J. Genetic Risk Factors and Disease Modifiers of Nonalcoholic Steatohepatitis // Gastroenterol. Clin. N. Am. 2020, 49, 25–44. doi: 10.1016/j.gtc.2019.09.001. 69. Kawaguchi T., Shima T., Mizuno M., Mitsumoto Y., Umemura A., Kanbara Y., Tanaka S., Sumida Y., Yasui K., Takahashi M. et al. Risk estimation model for nonalcoholic fatty liver disease in the Japanese using multiple genetic markers // PLoS ONE. 2018, 13, e0185490. doi: 10.1371/journal.pone.0185490. eCollection 2018. 70. Kim D.S., Jackson A.U., Li Y.K., Stringham H.M., Fin Met Seq I., Kuusisto J., Kangas A.J., Soininen P., Ala-Korpela M., Burant C.F. et al. Novel association of TM6SF2 rs58542926 genotype with increased serum tyrosine levels and decreased apoB-100 particles in Finns // J. Lipid Res. 2017, 58, 1471–1481. doi: 10.1194/jlr.P076034. Epub 2017 May 24. 71. Kim Y.S., Nam H.J., Han C.Y., Joo M.S., Jang K., Jun D.W., Kim S.G. LXRalpha activation inhibits autophagy and lipophagy in hepatocytes by dysregulating ATG4B and Rab-8B, reducing mitochondrial fuel oxidation // Hepatology 2020, 73, 1307–1326. doi: 10.1002/hep.31423. Epub 2021 Mar 16. 72. Kim H., Mendez R., Chen X., Fang D., Zhang K. Lysine Acetylation of CREBH Regulates Fasting-Induced Hepatic Lipid Metabolism // Mol. Cell. Biol. 2015, 35, 4121–4134. doi: 10.1128/MCB.00665-15. Epub 2015 Oct 5. 73. Latorre J., Moreno-Navarrete J.M.,Mercader J.M., Sabater M., Rovira O., Girones J., Ricart W., Fernandez-Real J.M., Ortega F.J. Decreased lipid metabolism but increased FA biosynthesis are coupled with changes in liver microRNAs in obese subjects with NAFLD // Int. J. Obes. 2017, 41, 620–630. doi: 10.1038/ijo.2017.21. 74. Laker R.C., Lillard T.S., Okutsu M., Zhang M., Hoehn K.L., Connelly J.J., Yan Z. Exercise prevents maternal high-fat diet induced hypermethylation of the Pgc-1alpha gene and age-dependent metabolic dysfunction in the offspring // Diabetes. 2014, 63, 1605–1611.1038/ijo.2017.21. Epub 2017 Jan 25. doi: 10.2337/db13-1614. Epub 2014 Jan 15. 75. Long M.T., Gurary E.B., Massaro J.M., Ma J., Hoffmann U., Chung R.T., Benjamin E.J., Loomba R. Parental non-alcoholic fatty liver disease increases risk of non-alcoholic fatty liver disease in offspring // Liver Int. 2019, 39, 740–747. doi: 10.1111/liv.13956. Epub 2018 Sep 25. 76. Loomba R., Rao F., Zhang L., Khandrika S., Ziegler M.G., Brenner D.A., O’Connor D.T. Genetic covariance between gamma glutamyl transpeptidase and fatty liver risk factors: Role of beta2-adrenergic receptor genetic variation in twins // Gastroenterology. 2010, 139, 836–845.e831. doi: 10.1053/j.gastro.2010.06.009. Epub 2010 Jun 9. 77. Loomba R., Schork N., Chen C.H., Bettencourt R., Bhatt A., Ang B., Nguyen P., Hernandez C., Richards L. Salotti J. et al. Heritability of Hepatic Fibrosis and Steatosis Based on a Prospective Twin Study // Gastroenterology. 2015, 149, 1784–1793. doi: 10.1053/j.gastro.2015.08.011. Epub 2015 Aug 20. 78. Liu Y.L., Reeves H.L., Burt A.D., Tiniakos D., McPherson S., Leathart J.B., Allison M.E., Alexander G.J., Piguet A.C., Anty R., et al. TM6SF2 rs58542926 influences hepatic fibrosis progression in patients with non-alcoholic fatty liver disease // Nat. Commun. 2014, 5, 4309. doi: 10.1038/ncomms5309. 79. Liu Y.L., Patman G.L., Leathart J.B., Piguet A.C., Burt A.D., Dufour J.F., Day C.P., Daly A.K., Reeves H.L., Anstee Q.M. Carriage of the PNPLA3 rs738409 C>G polymorphism confers an increased risk of non-alcoholic fatty liver disease associated hepatocellular carcinoma // J. Hepatol. 2014, 61, 75–81. doi: 10.1016/j.jhep.2014.02.030. Epub 2014 Mar 6. 80. Luukkonen P.K., Nick A., Holtta-Vuori M., Thiele C., Isokuortti E., Lallukka-Bruck S., Zhou Y., Hakkarainen A., Lundbom N., Peltonen M., et al. Human PNPLA3-I148M variant increases hepatic retention of polyunsaturated fatty acids // JCI Insight. 2019, 4, e127902. doi: 10.1172/jci.insight.127902. 81. Luukkonen P.K., Zhou Y., Nidhina Haridas P.A., Dwivedi O.P., Hyotylainen T., Ali A., Juuti A., Leivonen M., Tukiainen T., Ahonen L., et al. Impaired hepatic lipid synthesis from polyunsaturated fatty acids in TM6SF2 E167K variant carriers with NAFLD // J. Hepatol. 2017, 67, 128–136. doi: 10.1016/j.jhep.2017.02.014. Epub 2017 Feb 22. 82. Linden D., Ahnmark A., Pingitore P., Ciociola E., Ahlstedt I., Andreasson A.C., Sasidharan K., Madeyski-Bengtson K., Zurek M., Mancina R.M., et al. Pnpla3 silencing with antisense oligonucleotides ameliorates nonalcoholic steatohepatitis and fibrosis in Pnpla3 I148M knock-in mice // Mol. Metab. 2019, 22, 49–61. doi: 10.1016/j.molmet.2019.01.013. Epub 2019 Feb 5. 83. Ling C., Ronn T. Epigenetics in Human Obesity and Type 2 Diabetes // Cell Metab. 2019. 29, 1028–1044. doi: 10.1016/j.cmet.2019.03.009. 84. Liu C.H., Ampuero J., Gil-Gomez A., Montero-Vallejo R., Rojas A., Munoz-Hernandez R., Gallego-Duran R., Romero-Gomez M. miRNAs in patients with non-alcoholic fatty liver disease: A systematic review and meta-analysis // J. Hepatol. 2018, 69, 1335–1348. doi: 10.1016/j.jhep.2018.08.008. Epub 2018 Aug 22. 85. Li J., Zou B., Yeo Y.H., Feng Y. et al. Prevalence, incidence, and outcome of non-alcoholic fatty liver disease in Asia, 1999–2019: a systematic review and meta-analysis // Lancet Gastroenterol Hepatol. 2019. May, 4(5):389–398. doi: 10.1016/S2468–1253(19)30039–1. Epub 2019 Mar 20. 86. Майкл Х. et al. Global prevalence of NAFLD in 2019: a systematic review and meta-analysis // Clin Gastroenterol Hepatol 2022 Dec. 20(12):2809-2817.e28 https://doi.org/10.1016/j.cgh.2021.12.002 87. Mariani S., Fiore D., Basciani S., Persichetti A., Contini S., Lubrano C., Salvatori L., Lenzi A., Gnessi L. Plasma levels of SIRT1 associate with non-alcoholic fatty liver disease in obese patients // Endocrine. 2015, 49, 711–716. doi: 10.1007/s12020-014-0465-x. 88. Mariana Lazo, Clark Je.M. The epidemiology of nonalcoholic fatty liver disease: a global perspective // The epidemiology of nonalcoholic fatty liver disease: a global perspective. Semin Liver Dis. 2008 Nov. 28(4):339-50. DOI: 10.1055/s-0028-1091978 DOI: 10.1055/s-0028-1091978 89. Mayoral R., Osborn O., McNelis J., Johnson A.M., Oh, D.Y., Izquierdo C.L., Chung H., Li P., Traves P.G., Bandyopadhyay G., et al. Adipocyte SIRT1 knockout promotes PPARgamma activity, adipogenesis and insulin sensitivity in chronic-HFD and obesity // Mol. Metab. 2015, 4, 378–391. DOI: 10.1016/j.molmet.2015.02.007 90. Marjot T., Webb G.J., Barritt A.S., Moon A.M., Stamataki Z., Wong V.W., Barnes E. COVID-19 and liver disease: mechanistic and clinical perspectives // Nat Rev Gastroenterol Hepatol. 2021 May;18(5):348-364. doi: 10.1038/s41575-021-00426-4. 91. Makkonen J., Pietilainen K.H., Rissanen A., Kaprio J., Yki-Jarvinen H. Genetic factors contribute to variation in serum alanine aminotransferase activity independent of obesity and alcohol: A study in monozygotic and dizygotic twins // J. Hepatol. 2009, 50, 1035–1042. doi: 10.1016/j.jhep.2008.12.025. Epub 2009 Feb 18. 92. Mahdessian H., Taxiarchis A., Popov S., Silveira A., Franco-Cereceda A., Hamsten A., Eriksson P., van’t Hooft F. TM6SF2 is a regulator of liver fat metabolism influencing triglyceride secretion and hepatic lipid droplet content // Proc. Natl. Acad. Sci. USA 2014, 111, 8913–8918. DOI: 10.1073/pnas.1323785111 93. Milano M., Aghemo A., Mancina R.M., Fischer J., Dongiovanni P., De Nicola S., Fracanzani A.L., D’Ambrosio R., Maggioni M., De Francesco R. et al. Transmembrane 6 superfamily member 2 gene E167K variant impacts on steatosis and liver damage in chronic hepatitis C patients // Hepatology. 2015, 62, 111–117. DOI: 10.1002/hep.27811 94. Mancina R.M., Dongiovanni P., Petta S., Pingitore P., Meroni M., Rametta R., Boren J., Montalcini T., Pujia A., Wiklund O. et al. The MBOAT7-TMC4 Variant rs641738 Increases Risk of Nonalcoholic Fatty Liver Disease in Individuals of European Descent // Gastroenterology 2016, 150, 1219–1230.e1216. DOI: 10.1053/j.gastro.2016.01.032 95. Ma Y., Belyaeva O.V., Brown P.M., Fujita K. et al. 17-Beta Hydroxysteroid Dehydrogenase 13 Is a Hepatic Retinol Dehydrogenase Associated With Histological Features of Nonalcoholic Fatty Liver Disease // Hepatology 2019, 69, 1504–1519. DOI: 10.1002/hep.30350 96. Matschinsky F.M., Magnuson M.A., Zelent D., Jetton T.L., Doliba N., Han Y., Taub R., Grimsby J. The network of glucokinase expressing cells in glucose homeostasis and the potential of glucokinase activators for diabetes therapy // Diabetes 2006, 55, 1–12. doi: 10.1007/978-3-642-17214-4_15. 97. Murphy S.K., Yang H., Moylan C.A., Pang H., Dellinger A., Abdelmalek M.F., Garrett M.E., Ashley-Koch A., Suzuki A., Tillmann H.L. et al. Relationship between methylome and transcriptome in patients with nonalcoholic fatty liver disease // Gastroenterology. 2013, 145, 1076–1087. doi: 10.1053/j.gastro.2013.07.047 98. Moran-Salvador E., Mann J. Epigenetics and Liver Fibrosis. Cell // Mol. Gastroenterol. Hepatol. 2017, 4, 125–134. DOI: 10.1016/j.jcmgh.2017.04.007 99. Noushin G., Eric A. et all. A genome-wide meta-analysis based on electronic health records provides insight into the genetic architecture of non-alcoholic fatty liver disease // Cell Reports Medicine 2, 100437, November 16, 2021 doi: 10.1016/j.xcrm.2021.100437 100. Nasr P. et al. Fibrosis stage but not NASH predicts mortality and time to development of severe liver disease in biopsy-proven // J Hepatol. 2017, Dec. 67(6):1265-1273. DOI: 10.1016/j.jhep.2017.07.027 101. Nilsson E., Matte A., Perfilyev A., de Mello V.D., Kakela P., Pihlajamaki J., Ling C. Epigenetic Alterations in Human Liver From Subjects With Type 2 Diabetes in Parallel With Reduced Folate Levels // J. Clin. Endocrinol. Metab. 2015, 100, E1491–E1501. DOI: 10.1210/jc.2015-3204 doi: 10.1210/jc.2015-3204. 102. Nam S.Y., Lee, E.J., Kim K.R., Cha B.S., Song Y.D., Lim S.K., Lee H.C., Huh K.B. Effect of obesity on total and free insulin-like growth factor (IGF)-1, and their relationship to IGF-binding protein (BP)-1, IGFBP-2, IGFBP-3, insulin, and growth hormone // Int. J. Obes. Relat. Metab. Disord. J. Int. Assoc. Study Obes. 1997, 21, 355–359. DOI: 10.1038/sj.ijo.0800412 103. O’Hare E.A., Yang R., Yerges-Armstrong L.M., Sreenivasan U., McFarland R., Leitch C.C., Wilson M.H., Narina S., Gorden A., Ryan K.A. et al. TM6SF2 rs58542926 impacts lipid processing in liver and small intestine // Hepatology. 2017, 65, 1526–1542. DOI: 10.1002/hep.29021 104. Pelusi S., Baselli G., Pietrelli A., Dongiovanni P., Donati B., McCain M.V., Meroni M., Fracanzani A.L., Romagnoli R., Petta S., et al., Rare Pathogenic Variants Predispose to Hepatocellular Carcinoma in Nonalcoholic Fatty Liver Disease // Sci. Rep. 2019, 9, 3682. DOI: 10.1038/s41598-019-39998-2 105. Petta S., Miele L., Bugianesi E., Camma C., Rosso C., Boccia S., Cabibi D., Di Marco V., Grimaudo S., Grieco A., et al. Glucokinase regulatory protein gene polymorphism affects liver fibrosis in non-alcoholic fatty liver disease // PLoS ONE. 2014, 9, e87523. DOI: 10.1371/journal.pone.0087523 106. Pirola C.J., Fernandez Gianotti T., Castano G.O., Mallardi P., San Martino J., Mora Gonzalez Lopez Ledesma M., Flichman D., Mirshahi F., Sanyal A.J., Sookoian S., Circulating microRNA signature in non-alcoholic fatty liver disease: From serum non-coding RNAs to liver histology and disease pathogenesis // Gut. 2015, 64, 800–812. DOI: 10.1136/gutjnl-2014-306996 107. Pirola C.J., Garaycoechea M., Flichman D., Arrese M., San Martino J., Gazzi C., Castano G.O., Sookoian S., Splice variant rs72613567 prevents worst histologic outcomes in patients with nonalcoholic fatty liver disease // J. Lipid Res. 2019, 60, 176–185. DOI: 10.1194/jlr.P089953 108. Pirazzi C., Valenti L., Motta B.M., Pingitore P., Hedfalk K. et al. PNPLA3 has retinyl-palmitate lipase activity in human hepatic stellate cells // Hum. Mol. Genet. 2014, 23, 4077–4085. DOI: 10.1093/hmg/ddu121 109. Pingitore P., Pirazzi C., Mancina R.M., Motta B.M., Indiveri C., Pujia A., Montalcini T., Hedfalk K., Romeo S., Recombinant PNPLA3 protein shows triglyceride hydrolase activity and its I148M mutation results in loss of function // Biochim. Biophys. Acta 2014, 1841, 574–580. DOI: 10.1016/j.bbalip.2013.12.006 110. Pogribny I.P., Tryndyak V.P., Bagnyukova T.V., Melnyk S. Hepatic epigenetic phenotype predetermines individual susceptibility to hepatic steatosis in mice fed a lipogenic methyl-deficient diet // J. Hepatol. 2009, 51, 176–186. DOI: 10.1016/j.jhep.2009.03.021 111. Purushotham A., Schug T.T., Xu Q., Surapureddi S., Guo X., Li X. Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation // Cell Metab. 2009, 9, 327–338. DOI: 10.1016/j.cmet.2009.02.006 112. Richard D. Riley, Paul C. Lambert, Jan A. Staessen Meta-analysis of continuous outcomes combining individual patient data and aggregate data // Stat Med 2008 May 20. 27(11):1870-93. DOI: 10.1002/sim.3165 113. Rich N.E., Oji S., Mufti A.R., et al. Racial and Ethnic Disparities in Nonalcoholic Fatty Liver Disease Prevalence, Severity, and Outcomes in the United States: A Systematic Review and Meta-analysis // Clin Gastroenterol Hepatol. 2018 Feb;16(2):198–210.e2. doi: 10.1016/j.cgh.2017.09.041. 114. Romeo S., Kozlitina J., Xing C., Pertsemlidis A., Cox D., Pennacchio L.A., Boerwinkle, E., Cohen J.C., Hobbs H.H. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease // Nat. Genet. 2008, 40, 1461–1465. DOI: 10.1038/ng.257 115. Rotman Y., Koh C., Zmuda J.M., Kleiner D.E., Liang T.J., Nash C.R.N. The association of genetic variability in patatin-like phospholipase domain-containing protein 3 (PNPLA3) with histological severity of nonalcoholic fatty liver disease // Hepatology 2010, 52, 894–903. DOI: 10.1002/hep.23759 116. Sodum N., Kumar G., Bojja S.L., Kumar N., Rao C.M. Epigenetics in NAFLD/NASH: Targets and therapy // Pharm. Res 2021, 167, 105484. DOI:10.1016/j.phrs.2021.105484 117. Su W., Mao Z., Liu Y., Zhang X., Zhang W., Gustafsson J.A., Guan Y. Role of HSD17B13 in the liver physiology and pathophysiology // Mol. Cell. Endocrinol. 2019, 489, 119–125. DOI: 10.1016/j.mce.2018.10.014 118. Suter M.A., Ma J., Vuguin P.M., Hartil K., Fiallo A., Harris R.A., Charron M.J., Aagaard K.M. In utero exposure to a maternal high-fat diet alters the epigenetic histone code in a murine model // Am. J. Obstet. Gynecol. 2014, 210, 463.e1–463.e11. DOI: 10.1016/j.ajog.2014.01.045 119. Sookoian S., Castano G.O., Burgueno A.L., Gianotti T.F., Rosselli M.S., Pirola C.J. A nonsynonymous gene variant in the adiponutrin gene is associated with nonalcoholic fatty liver disease severity // J. Lipid Res. 2009, 50, 2111–2116. DOI: 10.1194/jlr.P900013-JLR200 120. Sookoian S., Castano G.O., Scian R., Mallardi P., Fernandez Gianotti T. Genetic variation in transmembrane 6 superfamily member 2 and the risk of nonalcoholic fatty liver disease and histological disease severity // Hepatology 2015, 61, 515–525. DOI: 10.1002/hep.27556 121. Smagris E., BasuRay S., Li J., Huang Y., Lai K.M., Gromada J. Pnpla3I148M knockin mice accumulate PNPLA3 on lipid droplets and develop hepatic steatosis // Hepatology. 2015, 61, 108–118. DOI: 10.1002/hep.27242 122. Sanchez-Pulido L., Ponting C.P. TM6SF2 and MAC30, new enzyme homologs in sterol metabolism and common metabolic disease // Front. Genet. 2014, 5, 439. DOI: 10.3389/fgene.2014.00439 123. Sookoian S., Rosselli M.S., Gemma C., Burgueno A.L., Fernandez Gianotti T., Castano G.O., Pirola C.J., Epigenetic regulation of insulin resistance in nonalcoholic fatty liver disease: Impact of liver methylation of the peroxisome proliferator-activated receptor gamma coactivator 1alpha promoter // Hepatology 2010, 52, 1992–2000. DOI: 10.1002/hep.23927 124. Santoro N., Zhang C.K.,Zhao H., Pakstis A.J., Kim G. et al. Variant in the glucokinase regulatory protein (GCKR) gene is associated with fatty liver in obese children and adolescents // Hepatology. 2012, 55, 781–789. DOI: 10.1002/hep.24806 125. Stattermayer A.F., Traussnigg S., Dienes H.P., Aigner E. et al. Hepatic steatosis in Wilson disease–Role of copper and PNPLA3 mutations // J. Hepatol. 2015, 63, 156–163. DOI: 10.1016/j.jhep.2015.01.034 126. Schwimmer J.B., Celedon M.A., Lavine J.E., Salem R., Campbell N. et al. Heritability of nonalcoholic fatty liver disease // Gastroenterology 2009, 136, 1585–1592. DOI: 10.1053/j.gastro.2009.01.050 127. Singh S., Allen A.M. et al. Fibrosis progression in nonalcoholic fatty liv er vs nonalcoholic steatohepatitis: a systematic review and meta-analysis of paired- biopsy studies // Clin Gastroenterol Hepatol. 2015 Apr. 13(4):643–54.quie3940.doi10.1016/j.cgh.2014.04.014 128. Saokaew S., Kanchanasurakit S., Thawichai K., et al. Association of non-alcoholic fatty liver disease and all-cause mortality in hospitalized cardiovascular disease patients: A systematic review and meta-analysis // Medicine (Baltimore). 2021 Feb 5. 100(5): e24557. doi: 10.1097/ MD.0000000000024557. 129. Targher G., Day C.P., Bonora E. Risk of cardiovascular disease in patients with nonalcoholic fatty liver disease // J Med. 2010. 363: 1341–1350. DOI: 10.1056/NEJMra0912063 130. Tian C., Stokowski R.P., Kershenobich D., Ballinger D.G., Hinds D.A. Variant in PNPLA3 is associated with alcoholic liver disease // Nat. Genet. 2010, 42, 21–23. DOI: 10.1038/ng.488 131. Trepo E., Romeo S., Zucman-Rossi J., Nahon P. PNPLA3 gene in liver diseases // J. Hepatol. 2016, 65, 399–412. DOI: 10.1016/j.jhep.2016.03.011 132. Trépo E., Valenti L. Update on NAFLD genetics: From new variants to the clinic // J Hepatol. 2020 Jun. 72(6):1196–1209. doi: 10.1016/j.jhep.2020.02.020. 132. Tanaka Y., Shimanaka Y., Caddeo A., Kubo T., Mao Y. et al. LPIAT1/MBOAT7 depletion increases triglyceride synthesis fueled by high phosphatidylinositol turnover // Gut 2021, 70, 180–193. DOI: 10.1136/gutjnl-2020-320646 133. Unalp-Arida A., Ruhl C.E., Patatin-Like Phospholipase Domain-Containing Protein 3 I148M and Liver Fat and Fibrosis Scores Predict Liver Disease Mortality in the U.S. Population // Hepatology 2020, 71, 820–834. DOI: 10.1002/hep.31032 134. Valenti L., Rumi M., Galmozzi E., Aghemo A., Del Menico B. et al. Patatin-like phospholipase domain-containing 3 I148M polymorphism, steatosis, and liver damage in chronic hepatitis C // Hepatology. 2011, 53, 791–799. DOI: 10.1002/hep.24123 135. Valenti L., Alisi A., Nobili V. Unraveling the genetics of fatty liver in obese children: Additive effect of P446L GCKR and I148M PNPLA3 polymorphisms // Hepatology. 2012, 55, 661–663. DOI: 10.1002/hep.25617 136. Vigano M., Valenti L., Lampertico P., Facchetti F., Motta B.M. et al. Patatin-like phospholipase domain-containing 3 I148M affects liver steatosis in patients with chronic hepatitis B // Hepatology. 2013, 58, 1245–1252. DOI: 10.1002/hep.26445 137. Viscarra J.A., Wang Y., Nguyen H.P., Choi Y.G., Sul H.S. Histone demethylase JMJD1C is phosphorylated by mTOR to activate de novo lipogenesis // Nat. Commun. 2020, 11, 796. DOI: 10.1038/s41467-020-14617-1 138. Vienberg S., Geiger J., Madsen S., Dalgaard L.T. MicroRNAs in metabolism // Acta Physiol. 2017, 219, 346–361. DOI: 10.1111/apha.12681 139. Wang P., Wu C.X., Li Y., Shen N. HSD17B13 rs72613567 protects against liver diseases and histological pro gression of nonalcoholic fatty liver disease: a systemat ic review and meta-analysis // Eur Rev Med Pharmacol Sci. 2020 Sep. 24(17):8997–9007. doi: 10.26355/eur rev_202009_22842 141. Watkins A.J., Dias I., Tsuro H., Allen D., Emes R.D., Moreton J., Wilson R., Ingram R.J.M., Sinclair K.D. Paternal diet programs offspring health through sperm- and seminal plasma-specific pathways in mice // Proc. Natl. Acad. Sci. USA. 2018, 115, 10064–10069. DOI: 10.1073/pnas.1806333115 142. Wilson P.A., Gardner S.D., Lambie N.M., Commans S.A., Crowther D.J. Characterization of the human patatin-like phospholi pase family // J. Lipid Res. 2006, 47, 1940–1949. DOI: 10.1194/jlr.M600185-JLR200 143. Zobair M., Younossy et al., Global epidemiology of non-alcoholic fatty liver disease - a meta-analytical assessment of prevalence, incidence, and outcomes // Hepatology 2016 Jul;64(1):73-84. DOI: 10.1002/hep.28431 144. Zeybel M., Hardy T., Robinson S.M., Fox C., Anstee Q.M. et al. Differential DNA methylation of genes involved in fibrosis progression in non-alcoholic fatty liver disease and alcoholic liver disease // Clin. Epigenet. 2015, 7, 25. doi: 10.1186/s13148-015-0056-6 145. The COVID-19 Host Genetics Initiative, The COVID-19 Host Genetics Initiative, a global initiative to elucidate the role of host genetic factors in susceptibility and severity of the SARS-CoV-2 virus pandemic // European Journal of Human Genetics. 2020. 28: 715–718. https://doi.org/10.1038/s41431-020-0636-6. References: 1. Drapkina O.M., Ivashkin V.T. Epidemiologicheskie osobennosti nealkogol'noi zhirovoi bolezni pecheni v Rossii. (Rezul'taty otkrytogo mnogotsentrovogo prospektivnogo issledovaniya-nablyudeniya DIREG L 01903) [Epidemiologic features of nonalcoholic fatty liver disease in Russia (Results of open multicenter prospective observational study DIREG L 01903)]. Rossiiskii zhurnal gastroenterologii, gepatologii, koloproktologii [Russ J of Gastroenterology, Hepatology, Coloproctiology]. 2014. 24(4):32-8. https://doi.org/10.20996/1819-6446-2016-12-4-424-429 (accessed 16.12.2022) [In Russian] 2. Evstifeeva  S.E., Shal'nova  S.A., Kucenko  V.A., Jarovaja  E.B. et al. Rasprostranennost' nealkogol'noi zhirovoi bolezni pecheni sredi naseleniya trudosposobnogo vozrasta: assotsiatsii s sotsial'no-demograficheskimi pokazatelyami i povedencheskimi faktorami riska) (dannye JeSSE-RF-2) [Prevalence of non-alcoholic fatty liver disease among the working-age population: associations with socio-demographic indicators and behavioral risk factors (ESSE RF-2 data)]. Kardiovaskulyarnaya terapiya i profilaktika [Cardiovascular Therapy and Prevention]. 2022. 21(9):3356. https://doi.org/10.15829/1728-8800-2022 [In Russian]. 3. Il'chenko L.Ju., Nikitin I.G., Fedorov I.G. COVID-19 i porazhenie pecheni [COVID-19 and Liver Damage]. Arkhiv vnutrennei meditsiny [Archives of Internal Medicine] 2020. 10(3):188-197. https://doi.org/10.20514/2226-6704-2020-10-3-188-197. [In Russian]. 4. Tepljuk D.A., Semenistaja M.Ch., Sorokoletov S.M., Lazebnik L.B., Pavlov Ch.S. Faktory riska progressirovaniya nealkogol'noi zhirovoi bolezni pecheni [Faktory riska progressirovaniya nealkogol'noi zhirovoi bolezni pecheni]. Eksperimental'naya i klinicheskaya gastroenterologiya [Nonalcoholic liver disease: review with a focus on risks of progression. Experimental and Clinical Gastroenterology. 2021;(8):167-174. 2021. 192(8): 167–174. DOI: 10.31146/1682-8658-ecg-192-8-167-174 [In Russian]. 5. Topchij T.B., Ardatskaja M.D., Butorova L.I., Maslovskij L.V., Minushkin O.N. Osobennosti sostoyaniya kishechnika na fone novoi koronavirusnoi infektsii [Features of the intestine conditions at patients with a new coronavirus infection]. Terapevticheskii arkhiv [Therapeutic archive]. 2022. 92(7):920–926. DOI: 10.26442/00403660.2022.07.201768 [In Russian].
Количество просмотров: 333

Ключевые слова:

Категория статей: Обзор литературы

Библиографическая ссылка

Алиева С.А., Никитин И.Г., Дедов Е.И., Эттингер О.А., Пак Л.А., Касым Л.Т., Жабагин К.Т., Крыкпаева А.С., Махатова А.Р., Жұматай А.Б., Какытаева A.Э. Особенности генетического полиморфизма неалкогольной жировой болезни печени // Наука и Здравоохранение. 2023. 1(Т.25). С. 209-222. doi 10.34689/SH.2023.25.1.025

Авторизируйтесь для отправки комментариев