Online ISSN: 3007-0244,
Print ISSN:  2410-4280
INVOLVEMENT OF THE SEROTONIN SYSTEM IN THE DEVELOPMENT OF PULMONARY ARTERIAL HYPERTENSION
Pulmonary arterial hypertension is a multifactorial disease characterized by vasoconstriction and pulmonary vascular remodeling, inflammation and thrombosis. Remodeling of the pulmonary vascular wall leads to an increase in pressure in the pulmonary artery, which increases the load on the right heart and ultimately leads to right ventricular failure [7, 10]. Despite significant progress in treatment, the prognosis of the disease remains unfavorable - in pediatric practice mortality within five years after diagnosis ranges from 25 to 60% [63]. Due to the frequent late diagnosis of pulmonary arterial hypertension and the severe consequences of this condition, the issue of identifying and studying biological markers of pulmonary arterial hypertension is actual problem. Although a growing body of research confirms that pulmonary artery smooth muscle endothelial cells, as well as platelets, play a role in the pathogenesis of pulmonary arterial hypertension, it is still unclear what these factors have in common. Platelets, releasing a wide variety of chemokines, can actively influence the pathogenesis and development of pulmonary arterial hypertension. The effect of platelet serotonin on the endothelium is mediated through vascular constriction and an increase in vascular resistance [9]. Currently, the role of serotonin and its metabolism in the pathogenesis of pulmonary arterial hypertension is widely discussed. This article presents a literature review, the purpose of which is to demonstrate the role of the serotonin system in the development of pulmonary arterial hypertension. The review includes data from articles (original clinical trials and literature reviews) found in the Scopus, Web of Science, Pubmed databases according to keywords. Sources published from 2012 to 2023 were used.
Mariya D. Ospanova1, Farida A. Mindubayeva1, Dinara I. Sadykova2 1 «Medical University of Karaganda» NСJSC, Karaganda, Republic of Kazakhstan; 2 Kazan State Medical University, Kazan, Russian Federation.
1. Бокерия Е.Л. Перинатальная кардиология: настоящее и будущее. Часть I: врожденные пороки сердца // Российский вестник перинатологии и педиатрии. 2019. Т.64. №3. С.5–10. 2. Горбачевский С.В., Шмальц А.А. Диагностика легочной гипертензии, ассоциированной с врожденными пороками сердца. Часть 1. Определение, классификация и первичное обследование пациентов // Российский вестник перинатологии и педиатрии. 2021. Т.66. №5. С.28-37. 3. Дергачев А., Воронецкий А. Легочная артериальная гипертензия у детей // Экстренная медицина. 2016. 5(2). С.269-276. 4. Мартынюк Т.В., Чазова И.Е. Легочная артериальная гипертензия: достижения и реалии современного лечения, взгляд в будущее // Терапевтический архив. 2021. Т. 93. №9. С.1009-1017. 5. Мустафин А.А., Нигматуллина Р.Р., Билалова Д.Ф. Серотонин как основная причина развития легочной гипертензии: от гипотезы к лечебной практике // Клиническая медицина. 2018. C.107-111. 6. Нигматуллина Р.Р., Садыкова Д.И., Афлятумова Д.И., Чибирева М.Д. Серотонин, оксид азота и эндотелин-1 крови как ранние маркеры артериальной гипертензии у неполовозрелых крысят // Фундаментальная и клиническая электрофизиология сердца. Актуальные вопросы аритмологии. 2018.С.39-40. 7. Ниязова Ю.И., Миндубаева Ф.А. Роль серотонинергической системы в механизмах развития легочной артериальной гипертензии // Медицина и Экология. 2019. Т.3. С.5-11. 8. Хагай Е.И., Абильмажинова Г.Д. Врожденные пороки сердца у детей, осложненные легочной гипертензией. Диагностика и лечение. Литературный обзор // Наука и здравоохранение. 2017. Т.5. С.129-144. 9. Abdulhalim A., Shimaa Е., Hossam H., Amrousy D.E. Platelet activation markers in children with congenital heart disease associated with pulmonary arterial hypertension // Congenital Heart Disease. 2018. N 13(4). P.506-511. 10. Abman S. Pediatric Pulmonary Hypertension. Guidelines from the American Heart Asociation and American Thoracic Society // Circulation. 2015. N 32. P. 2037-2099. 11. Amoozgar H., Banafi P. et al. Management of Persistent Pulmonary Hypertension after correction of congenital heart defect with autologous marrow-derived mononuclear stem cell injection into the Pulmonary artery: a pilot study // Pediatr Cardiol. 2020. N 41(2). P. 398–406 12. Apitz C., Hansmann G. Genetic testing and blood biomarkers in paediatric pulmonary hypertension. Expert consensus statement on the diagnosis and treatment of paediatric pulmonary hypertension. The European Paediatric Pulmonary Vascular Disease Network, endorsed by ISHLT and DGPK // Heart. 2016. N 102. P. 23–9. 13. Arthur Ataam J., Mercier O., Lamrani L, et al. ICAM-1 promotes the abnormal endothelial cell phenotype in chronic thromboembolic pulmonary hypertension // The Journal of Heart and Lung Transplantation. 2019. N 38(9). P. 982–996. 14. Berger R.M., Haworth S.G. et al. FUTURE-2: results from an open-label, long-term safety and tolerability extension study using the pediatric FormUlation of bosenTan in pUlmonary arterial hypertension // Int J Cardiol. 2016. N 202. P. 52–58. 15. Boucly A., Weatherald J. et al. Risk assessment, prognosis and guideline implementation in pulmonary arterial hypertension // Eur Respir J. 2017. N 50. P. 1-10. 16. Chao Yuan, Huan-Xin Chen, Hai-Tao Hou, et al. Protein biomarkers and risk scores in pulmonary arterial hypertension associated with ventricular septal defect: integration of multi-omics and validation // Am J Physiol Lung Cell Mol Physiol. 2020. N 319(5). P. 810-822. 17. Ciuclan L., Bonneau O., Hussey M, et al. A novel murine model of severe pulmonary arterial hypertension // Am J Respir Crit Care Med. 2012. N 184. P. 1171–1182. 18. Clavé M.M., Maeda N.Y. et al. Factors influencing outcomes in patients with Eisenmenger syndrome: a nineyear follow-up study // Pulm Circ. 2017. N 7 (3). P. 635-642. 19. Davizon‐Castillo P., Allawzi A., Sorrells M., et al. Platelet activation in experimental murine neonatal pulmonary hypertension // Physiological Reports. 2020. N 8(5). P. 1-14. 20. Dawson A.L., Cassell C.H. et al. Factors Associated With Late Detection of Critical Congenital Heart Disease in Newborns // Pediatrics. 2013. N 132(3). P. 604–611 21. Dees C., Akhmetshina A. et al. Platelet-derived serotonin links vascular disease and tissue fibrosis // ExpMed. 2011. N 208. P. 961–972. 22. Delaney C., Sherlock L., et al. Serotonin 2A receptor inhibition protects against the development of pulmonary hypertension and pulmonary vascular remodeling in neonatal mice // Am J Physiol Lung Cell Mol Physiol. 2018. N 314(5). P. 871-881. 23. Diller G.P., Kempny A. et al. Survival prospects of treatment naive patients with Eisenmenger: a systematic review of the literature and report of own experience // Heart. 2016. N 100(17). P. 1366–1372. 24. Donofrio M.T., Moon-Grady A.J. et al. Diagnosis and Treatment of Fetal Cardiac Disease: A Scientific Statement From the American Heart Association // Circulation 2014. N 129(21). P. 2183–2242. 25. Drakouli M., Petsios K. et al. Determinants of quality of life in children and adolescents with CHD: a systematic review // Cardiology in the Young. 2015. N 25(6). P.1027-1036. 26. El-Kersh K., Suliman S. et al. Selexipag in congenital heart disease-associated pulmonary arterial hypertension and Eisenmenger syndrome: first report // Am J Ther 2018. N 25(6). P. 714–715. 27. Farag M., El Amrousy D. et al. Role of plasma asymmetric dimethyl-l-arginine levels in detection of pulmonary hypertension in children with CHD // Cardiol Young. 2018. N 28(9). P. 1163–1168. 28. Fox B.D., Azoulay L. et al. The use of antidepressants and the risk of idiopathic pulmonary arterial hypertension // Can J Cardiol. 2014. N 30. P. 1633–1639. 29. Gaheen R., El Amrousy D. et al. Plasma copeptin levels in children with pulmonary arterial hypertension associated with congenital heart disease // Eur J Pediatr. 2021. N 180. P. 2889–2895. 30. Gairhe S., Bauer N.N. et al. Myoendothelial gap junctional signaling induces differentiation of pulmonary arterial smooth muscle cells // Am J Physiol Lung Cell Mol Physiol. 2011. N 301. P. 527–535. 31. Galiè N, Channick R.N. et al. Risk stratification and medical therapy of pulmonary arterial hypertension // Eur Respir J. 2019. N 53. P. 180-188. 32. Garcia R., Peddy S. Heart Disease in Children // Prim Care. 2018. N 45(1). P. 143-154. 33. Gatzoulis M.A., Beghetti M. et al. Pulmonary arterial hypertension associated with congenital heart disease: Recent advances and future directions // Int. J. Cardiol. 2014. N 77. P. 340–347. 34. Gray E. A. Assessment of the serotonin pathway as a therapeutic target for pulmonary hypertension // Synchrotron Rad. 2013. N 20. P. 756-764. 35. Haarman M.G., Douwes J.M. et al. The clinical value of proposed risk stratification tools in pediatric pulmonary arterial hypertension // Am J Respir Crit Care Med. 2019. N 200(10). P. 1312-1315. 36. Hang Z. Association between serotonin transporter (SERT) gene polymorphism and idiopathic pulmonary arterial hypertension: a meta-analysis and review of the literature // Metabolism. 2013. N 62(12) P. 1867-1875. 37. Hansmann G., Apitz C. et al. Executive Summary. Expert Consensus Statement on the Diagnosis and Treatment of Paediatric Pulmonary Hypertension. Expert consensus statement on the diagnosis and treatment of paediatric pulmonary hypertension. The European Paediatric Pulmonary Vascular Disease Network, endorsed by ISHLT and DGPK // Heart. 2016. N 102. P. 86–100. 38. Hood K.Y., Mair K.M., Harvey A.P., et al. Serotonin signaling through the 5-HT1B receptor and NADPH oxidase 1 in pulmonary arterial hypertension. Arterioscler Thromb // Vasc Biol. 2017. N 37. P. 1361–1370. 39. Hutcheson J.D., Setola V. et al. Serotonin receptors and heart valve disease // Pharmacol Ther. 2011. N 132. P. 146–157. 40. Iacobazzi D., Suleiman M.S. et al. Cellular and molecular basis of RV hypertrophy in congenital heart disease // Heart. 2016. N 102(1). P. 12–17. 41. Ismail E.A.R., Youssef O.I. Platelet-Derived Microparticles and Platelet Function Profile in Children With Congenital Heart Disease // Clinical and Applied Thrombosis/Hemostasis. 2013. N 19(4). P. 424–432. 42. Ivy D.D. Paediatric pulmonary hypertension // J. Am. Coll. Cardiol. 2013. N 62. P. 117-126. 43. Janssen W., Schymura Y. et al. 5-HT2B receptor antagonists inhibit fibrosis and protect from RV heart failure // Biomed Res Int. 2015. N 2015. P. 403-438. 44. Jin N., Yu N. et al. Identification of potential serum biomarkers for congenital heart disease children with pulmonary arterial hypertension by metabonomics // BMC Cardiovascular Disorders. 2023. N 167. P. 3-11 45. Johansen A.K. The serotonin transporter promotes a pathological estrogen metabolic pathway in pulmonary hypertension via cytochrome P450 1B1 // Pulmonary Circulation. 2016. N 6. P. 82-92. 46. Kaestner M., Schranz D. et al. Pulmonary hypertension in the intensive care unit. Expert consensus statement on the diagnosis and treatment of paediatric pulmonary hypertension. The European Paediatric Pulmonary Vascular Disease Network, endorsed by ISHLT and DGPK // Heart. 2016. N 102. P. 57–66. 47. Kawut S.M., Archer-Chicko C.L. et al. Anastrozole in pulmonary arterial hypertension. A randomized, double-blind, placebo-controlled trial // Am J Respir Crit Care. 2017. N 195(3). P. 360–368. 48. Kayali S., Ertugrul I. et al. Sensitive Cardiac Troponins: could they be new biomarkers in Pediatric Pulmonary Hypertension due to congenital heart disease? // Pediatr Cardiol. 2018. N 39(4). P. 1–8. 49. Kazimierczyk R., Kamiński K. The role of platelets in the development and progression of pulmonary arterial hypertension // Advances in Medical Sciences. 2018. N 63. P. 312–316. 50. Kelley L. Biomarkers for pediatric pulmonary arterial hypertension – a call to collaborate Frontiers in Pediatrics // Pediatric Pulmonology. 2014. N 2. P. 1-12. 51. Kheyfets V.O., Sucharov C.C., et al. Circulating miRNAs in pediatric pulmonary hypertension show promise as biomarkers of vascular function // OxidMed Cell Longev. 2017. N 2017. P. 1-11. 52. Kluess H.A., Stafford J. Intrapulmonary arteries respond to serotonin and adenosine triphosphate in broiler chickens susceptible to idiopathic pulmonary arterial hypertension // Poult Sci. 2021. N 91. P.1432–1440. 53. Kozlik-Feldmann R., Hansmann G. et al. Pulmonary hypertension in children with congenital heart disease (PAH-CHD, PPHVD-CHD). Expert consensus statement on the diagnosis and treatment of paediatric pulmonary hypertension. The European Paediatric Pulmonary Vascular Disease Network, endorsed by ISHLT and DGPK // 2016. N 102. P. 42–48. 54. Kylhammar D., Kjellström B. et al. A comprehensive risk stratification at early follow-up determines prognosis in pulmonary arterial hypertension // Eur Heart J. 2018. N 39. P. 175–181. 55. Lafitte S., Pillois X., Reant P. et al. Estimation of pulmonary pressures and diagnosis of pulmonary hypertension by Doppler echocardiography: a retrospective comparison of routine echocardiography and invasive hemodynamics // J Am Soc Echocardiogr. 2013. N 26(5). P. 457-463. 56. Lannan K.L., Phipps R.P. et al. Thrombosis, platelets, microparticles and PAH: more than a lot // Drug Discovery Today. 2014. N 13(83). P. 1-6. 57. Li G., Tang .L, Jia P. et al. Elevated plasma connective tissue growth factor levels in children with pulmonary arterial hypertension Associ¬ated with congenital heart disease // Pediatr Cardiol. 2016. N. 37(4). P. 714–21. 58. MacLean M.R. The serotonin hypothesis in pulmonary hypertension revisited: targets for novel therapies // Pulmonary Circulation. 2018. N 8 (2). P. 1-9. 59. Manes A., Palazzini M. et al. Current era survival of patient with pulmonary arterial hypertension associated with congenital heart disease: A comparison between clinical subgroups // Eur Heart J. 2014. N 35(11). P. 716–724. 60. Mese T., Guven B., Yilmazer M. M., et al. Platelet activation markers in children with congenital heart disease associated with pulmonary arterial hypertension // Congenital Heart Disease. 2018. N 13(4). P. 506–511. 61. Mindubaуeva F., Niyazova Y., Nigmatullina R., et al. Membrane serotonin transporter as a biomarker of pulmonary arterial hypertension in children with congenital heart defect // Research Journal of Pharmacy and Technology. 2020. N 5 (13). P. 2435-2438. 62. Murni I.K. et al. Delayed diagnosis in children with congenital heart disease: a mixed-method study // BMC Pediatrics. 2021. N 191. P. 2-7. 63. Nesrine F., Frederic L. et al. Diagnosis and treatment of pediatric pulmonary arterial hypertension // Expert Review of Cardiovascular Therapy. 2019. N 17(3). P. 161-175. 64. Oster M.E., Aucott S.W. et al. Lessons learned from newborn screening for critical congenital heart defects // Pediatrics. 2016. N 137(5). P. 1-14. 65. Pascall E., Tulloh R.MR. Pulmonary hypertension in congenital heart disease // Future Cardiol. 2018. N 14(4). P. 343–353 66. Penumatsa K.C. Transglutaminase 2-mediated serotonylation in pulmonary hyperten-sion //Am. J. Physiol. Lung Cell Mol. Physiol. 2014. N 306. P. 309-315. 67. Penumatsa K., Abualkhair S. et al. Tissue transglutaminase promotes serotonin-induced AKT signaling and mitogenesis in pulmonary vascular smooth muscle cells // Cell Signal. 2014. N 26. P. 2818–2825. 68. Ploegstra M.J., Arjaans S. Clinical worsening as composite study end point in pediatric pulmonary arterial hypertension // Chest. 2015. N 148. P. 655–666. 69. Ploegstra M.J., Ivy D.D. et al. Growth in children with pulmonary arterial hypertension: a longitudinal retrospective multiregistry study // Lancet Respir Med. 2016. N 4. P. 281–290. 70. Qian Y., Quan R. et al. Characteristics, Long-term Survival, and Risk Assessment of Pediatric Pulmonary Arterial Hypertension in China Insights From a National Multicenter Prospective Registry// Chest. 2023. N 163(6). P. 1531-1542 71. Raina A., Abraham W.T. et al. Limitations of right heart catheterization in the diagnosis and risk stratification of patients with pulmonary hypertension related to left heart disease: insights from a wireless pulmonary artery pressure monitoring system // J Heart Lung Transplant. 2015. N 34(3). P. 438-447. 72. Rose M.L., Strange G. Congenital heart disease-associated pulmonary arterial hypertension: preliminary results from a novel registry // Intern Med J. 2012. N 42. P. 874–879. 73. Rosenzweig E.B., Abman S.H. et al. Paediatric pulmonary arterial hypertension: updates on definition, classification, diagnostics and management // Eur Respir J. 2019. N 53. P. 1-18 74. Rosenzweig E.B., Krishnan U. Congenital Heart Disease-Associated Pulmonary Hypertension // Clin Chest Med. 2021. N 42. P. 9–18 75. Sadoughi A., Roberts K.E., Preston I.R., et al. Use of selective serotonin reuptake inhibitors and outcomes in pulmonary arterial hypertension // Chest. 2013. N 144. P. 531–541. 76. Santos-Gomes J., Gandra I., Adão R., et al. An Overview of Circulating Pulmonary Arterial Hypertension Biomarkers // Frontiers in Cardiovascular Medicine. 2022. N 9. P. 1-26. 77. Shajib M.S., Khan W.I. The role of serotonin and its receptors in activation of immune responses and inflammation // Acta Physiol (Oxf). 2015. N. 213. P. 561–574. 78. Simonneau G., Hoeper M.M. et al. Future perspectives in pulmonary arterial hypertension // Eur Respir Rev. 2016. N 25. P. 381–389. 79. Simpson C.E., Damico R.L. Ventricular mass as a prognostic imaging biomarker in incident pulmonary arterial hypertension // Eur Respir. 2019. N 53(4). P. 180-206. 80. Soares R.P.S., Bydlowski S.P. et al. Plasmatic ADAMTS-13 metalloprotease and von Willebrand factor in children with cyanotic congenital heart disease // Braz J Med Biol Res. 2013. N 46(4). P. 375–381. 81. Stephan R., Marion D. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension // European Heart Journal. 2022. N 43(38). P. 3618-3731. 82. Stępnowska E., Lewicka E. at al. Prognostic factors in pulmonary arterial hypertension: Literature review // Adv Clin Exp Med. 2017. N 26(3). P. 549–553 83. Swift A.J., Capener D. et al. Magnetic resonance imaging in the prognostic evaluation of patients with pulmonary arterial hypertension // Am J Respir Crit Care Med. 2017. N 196. P. 228–239. 84. Tanaka T., Mori M., Tashiro M. Impact of Plasma 5 Hydroxyindoleacetic Acid, a Serotonin Metabolite, on Clinical Severity in Acute Respiratory Distress Syndrome // Sec Intensive Care Medicine and Anesthesiology. 2021. N 8. P. 1-6. 85. Weatherald J., Reis A. et al. Pulmonary arterial hypertension registries: past, present and into the future // Eur Respir Rev. 2019. N 28(154). P. 1-2. 86. West J.D., Carrier E.J. et al. Serotonin 2B receptor antagonism prevents heritable pulmonary arterial hypertension // PLoS One. 2016. N 10(11). P. 1-18. 87. Wong C.M., Bansal G. et al. Reactive oxygen species and antioxidants in pulmonary hypertension // Antioxid Redox Signal. 2013. N 18. P. 1789–1796. 88. Woodcock C.C., Chan S.Y. The Search for Disease-Modifying Therapies in Pulmonary Hypertension // J Cardiovasc Pharmacol Ther. 2019 N 24(4). P. 334–354. 89. Zanjani K.H. Platelets in pulmonary hypertension: a causative role or a simple association? // Iran J Pediatr. 2012. N 22(2). P. 145-157. 90. Zijlstra W. Survival differences in pediatric pulmonary arterial hypertension: Clues to a better understanding of outcome and optimal treatment strategies // Am Coll Cardiol. 2014. N 3(20). P. 2159-2169. 91. Zijlstra W.M., Ploegstra M.J.et al. Physical activity in pediatric pulmonary arterial hypertension measured by accelerometry. A candidate clinical endpoint // Am J Respir Crit Care Med. 2017. N 196. P. 220–227. References: [1-8] 1. Bokeriya E.L. Perinatal'naya kardiologiya: nastoyashchee i budushchee. Chast' I: vrozhdennye poroki serdtsa [Perinatal cardiology: present and future. Part I: congenital heart defects]. Rossiiskii vestnik perinatologii i pediatrii [Russian Bulletin of Perinatology and Pediatrics]. 2019. N 64 (3). pp. 5–10. [in Russian] 2. Gorbachevskij S.V., SHmal'c A.A. Diagnostika legochnoi gipertenzii, assotsiirovannoi s vrozhdennymi porokami serdtsa. Chast' 1. Opredelenie, klassifikatsiya i pervichnoe obsledovanie patsientov [Diagnosis of pulmonary hypertension associated with congenital heart disease. Part 1. Definition, classification and initial examination of patients]. Rossiiskii vestnik perinatologii i pediatrii [Russian Bulletin of Perinatology and Pediatrics]. 2021. V.66. №5 pp.28-37. [in Russian] 3. Dergachev A., Voroneckij A. Legochnaya arterial'naya gipertenziya u detej [Pulmonary arterial hypertension in children]. Ekstrennaya meditsina [Emergency medicine]. 2016. N 5(2). pp.269-276. [in Russian] 4. Martynyuk T.V., CHazova I.E. Legochnaya arterial'naya gipertenziya: dostizheniya i realii sovremennogo lecheniya, vzglyad v budushchee [Pulmonary arterial hypertension: achievements and realities of modern treatment, a look into the future]. Terapevticheskii arkhiv [Therapeutic archive]. 2021. N 93 (9). pp.1009-1017. [in Russian] 5. Mustafin A.A., Nigmatullina R.R., Bilalova D.F. Serotonin kak osnovnaya prichina razvitiya legochnoi gipertenzii: ot gipotezy k lechebnoi praktike [Serotonin as the main cause of pulmonary hypertension: from hypothesis to medical practice]. Klinicheskaya meditsina [Clinical medicine]. 2018. pp.107-111. [in Russian] 6. Nigmatullina R.R., Sadykova D.I., Aflyatumova D.I., CHibireva M.D. Serotonin, oksid azota i endotelin-1 krovi kak rannie markery arterial'noj gipertenzii u nepolovozrelyh krysyat [Serotonin, nitric oxide and blood endothelin-1 as early markers of arterial hypertension in immature rat pups]. Fundamental'naya i klinicheskaya elektrofiziologiya serdtsa. Aktual'nye voprosy aritmologii [Fundamental and clinical electrophysiology of the heart. Topical issues of arrhythmology]. 2018. pp.39-40. [in Russian] 7. Niyazova YU.I., Mindubaeva F.A. Rol' serotoninergicheskoi sistemy v mekhanizmakh razvitiya legochnoi arterial'noi gipertenzii [The role of the serotonergic system in the mechanisms of development of pulmonary arterial hypertension]. Meditsina i Ekologiya [Medicine and ecology]. 2019. N 3. pp. 5-11. [in Russian] 8. Hagaj E.I., Abil'mazhinova G.D. Vrozhdennye poroki serdtsa u detei, oslozhnennye legochnoi gipertenziei. Diagnostika i lechenie. Literaturnyi obzor [Congenital heart defects in children complicated by pulmonary hypertension. Diagnosis and treatment. Literature review]. Nauka i Zdravookhranenie [Science & Healthcare]. 2017. N 5. pp. 129-144. [in Russian]
Количество просмотров: 105013

Ключевые слова:

Категория статей: Обзор литературы

Библиографическая ссылка

Ospanova M.D., Mindubayeva F.A., Sadykova D.I. Involvement of the serotonin system in the development of pulmonary arterial hypertension // Nauka i Zdravookhranenie [Science & Healthcare]. 2023, (Vol.25) 5, pp. 174-183. DOI 10.34689/SH.2023.25.5.023

Авторизируйтесь для отправки комментариев