Online ISSN: 3007-0244,
Print ISSN:  2410-4280
PERSONALIZED MATHEMATICAL MODEL OF OUTCOME IN PATIENTS WITH TRAUMATIC BRAIN INJURIES
Introduction. Previously, determining the prognosis based on epidemiological data was the key to informing about the treatment of patients [1,2], but modern prognostic models based on demographic data, clinical examination, radiological imaging have limited prognostic ability [3,4]. At the same time, a reliable prognosis of the outcome of the disease with modern highly specific and sensitive markers is of great clinical importance [5,6]. Aim. Developing a method for mathematical modeling of the outcome of acute traumatic cerebral injuries based on complex clinical, laboratory, and neuroimaging studies with integral scales for assessing neurological status. Materials and methods. The studies were conducted in 79 patients with various acute traumatic brain injuries. All patients underwent a detailed clinical and neurological examination using the Glasgow Coma Scale (GCS), computed tomography, X-ray, ultrasound, hematological and biochemical examinations. To identify dependent and independent risk factors for death in the acute period of injury, a one-dimensional and multidimensional regression analysis was performed. To determine the predictive variables, an analysis of the receiver's performance characteristics (ROC) was performed with the calculation of sensitivity and specificity. The results obtained. We found that the strongest predictors of a poor outcome were - AVDO2 > 52% of the left side (OR) - 9.01 (95% СI: 3.45 - 23.51), p<0.0001; AVDO2 >52%, right side (OR) - 5.71 (95% СI: 2.31-14.16), p=0.0002. Lactate level >3.3 mmol/l (OR) - 4.30 (95% СI: 1.61-11.51), p=0.0036. With an increase in S100ß 0.1 mcg/l> (OR) - 3.77 (95% СI:1.63-8.73), p=0.0020 and NSE ng/ml>12.5 (OR) - 2.69 (95% СI:1.14-6.36), p=0.0240; SAD>169 mmHg (OR) - 3.27 (95% СI:1.26-8.48), p=0.0146; at the age of > 65 years (OR) - 2.43 (95% СI: 1.04-5.68), p=0.0406. The measure of reliability of the model obtained by the criterion of pseudo R2, Nagelkerke - 627.3% and logLikelihood - 112.7. Сonclusion. These data were used to develop a mathematical model that allows predicting the outcome of the disease. The best predicted value of the model had a cut-off point of 99.13%, AuROC-0.912; Se-93.26%; Sp-80.00%; NPV-94.55%; PPV-76.15%.
Жанслу Н. Саркулова1, https://orcid.org/0000-0001-6669-1244 Айнур Б. Токшилыкова1, https://orcid.org/0000-0003-4416-0180 Марат Н. Саркулов1, https://orcid.org/0000-0003-1165-9049 Марат Х. Жанкулов1, https://orcid.org/0000-0002-9184-7316 Ботагоз М. Калиева1, https://orcid.org / 0000-0002-0143-0761 Камила Р. Даниярова1, https://orcid.org/0000-0002-6145-1839 Жулдыз Ж. Жулдызбаева1, https://orcid.org/0009-0004-5743-6240
Abboud T., Mende K.C., Jung R. et al. Prognostic Value of Early S100 Calcium Binding Protein B and Neuron-Specific Enolase in Patients with Poor-Grade Aneurysmal Subarachnoid Hemorrhage: A Pilot Study. World Neurosurg. 2017. Vol. 108. P. 669-675. 2. Badjatia N., Carney N., Crocco T.J. et al. Guidelines for prehospital management of traumatic brain injury 2nd edition. Prehosp Emerg Care. 2008. Vol. 12, Suppl 1. P. S1-52. 3. Cheng F., Yuan Q., Yang J. et al. The prognostic value of serum neuron-specific enolase in traumatic brain injury: systematic review and meta-analysis. PLoS One. 2014. Vol. 9, Issue 9. P. e106680-1e106680-15. 4. Chiu C.C., Liao Y.E., Yang L.Y. et al. Neuroinflammation in animal models of traumatic brain injury. J Neurosci Methods. 2016. Vol. 272. P. 38-49. 5. Seliverstov P.A., Shapkin Yu.G. Assessment of the severity and prediction of the outcome of polytrauma: the current state of the problem (review). Modern technologies in medicine. 2017. Vol. 9, No. 2. C. 207-218. 6. Semenov A.V., Semenova Yu.A. Predicting the fatal outcome in patients with combined traumatic brain injury. Emergency medical care. 2016. Vol. 17, No. 4. pp. 26-32. 7. Semenov A.V., Sorokovikov V.A. Scales for assessing the severity and predicting the outcome of injury. Polytrauma. 2016. No. 2. pp. 80-90. 8. Dzyak L.A., Zozulya O.A. A step-by-step model for predicting the outcomes of severe traumatic brain injury. Medicine of emergency conditions. 2016. No.4. C. 79-83. 9. Cherniy T.V., Andronova I.A., Cherniy V.I. et al. Predicting the outcome of severe traumatic brain injury. Medicine of emergency conditions. 2020. vol. 16, No. 5. pp. 87-94. 10. Ho SY, Phua K, Wong L, Bin Goh WW. Extensions of the External Validation for Checking Learned Model Interpretability and Generalizability. Patterns (New York, N.Y.). 2020 Nov;1(8):100129. DOI: 10.1016/j.patter.2020.100129. PMID: 33294870; PMCID: PMC7691387. 11. Jiang W., Jin P., Wei W. et al. Apoptosis in cerebrospinal fluid as outcome predictors in severe traumatic brain injury: An observational study. Medicine (Baltimore). 2020. Vol. 99, Issue 26. P. 1-4. 12. Khaki D., Hietanen V., Corell A. et al. Selection of CT variables and prognostic models for outcome prediction in patients with traumatic brain injury. Scand J Trauma Resusc Emerg Med. 2021. Vol. 29, Issue 1. P. 94-1-94-9. 13. Lanzillo B., Piscosquito G., Marcuccio L. et al. Prognosis of severe acquired brain injury: Short and long-term outcome determinants and their potential clinical relevance after rehabilitation. A comprehensive approach to analyze cohort studies. PLoS One. 2019. Vol. 14, Issue 9. P. e0216507-1- e0216507-17. 14. Lai P.M., Du R. Association between S100B Levels and Long-Term Outcome after Aneurysmal Subarachnoid Hemorrhage: Systematic Review and Pooled Analysis. PLoS One. 2016. Vol. 11, Issue 3. P. 1-10. 15. Li X., Lü C., Wang J. et al. Establishment and validation of a model for brain injury state evaluation and prognosis prediction. Chin J Traumatol. 2020. Vol. 23, №5. P. 284-289. 16. Mahan M.Y., Thorpe M., Ahmadi A., Abdallah T., Casey H., Sturtevant D., Judge-Yoakam S., Hoover C., Rafter D., Miner J., Richardson C., Samadani U. Glial Fibrillary Acidic Protein (GFAP) Outperforms S100 Calcium-Binding Protein B (S100B) and Ubiquitin C-Terminal Hydrolase L1 (UCH-L1) as Predictor for Positive Computed Tomography of the Head in Trauma Subjects. World Neurosurg. 2019 Aug;128:e434-e444. doi: 10.1016/j.wneu.2019.04.170. Epub 2019 May 1. PMID: 31051301. 17. Maas AIR, Menon DK, Manley GT, Abrams M, Åkerlund C, Andelic N, Aries M, Bashford T, Bell MJ, Bodien YG, Brett BL, Büki A, Chesnut RM, Citerio G, Clark D, Clasby B, Cooper DJ, et al.; InTBIR Participants and Investigators. Traumatic brain injury: progress and challenges in prevention, clinical care, and research. Lancet Neurol. 2022 Nov;21(11):1004-1060. doi: 10.1016/S1474-4422(22)00309-X. Epub 2022 Sep 29. Erratum in: Lancet Neurol. 2022 Oct 7: PMID: 36183712; PMCID: PMC10427240. 18. Maeda Y., Ichikawa R., Misawa J. et al. External validation of the TRISS, CRASH, and IMPACT prognostic models in severe traumatic brain injury in Japan. PLoS One. 2019. Vol. 14, Issue 8. P. e0221791-1-e0221791-10. 19. Majdan M., Lingsma H.F., Nieboer D. et al. Performance of IMPACT, CRASH and Nijmegen models in predicting six month outcome of patients with severe or moderate TBI: an external validation study. Scand J Trauma Resusc Emerg Med. 2014. Vol. 22. P. 68-1-68-10. 20. Moorthy D.K., Rajesh K., Priya S.M. et al. Prediction of Outcome Based on Trauma and Injury Severity Score, IMPACT and CRASH Prognostic Models in Moderate-to-Severe Traumatic Brain Injury in the Elderly. Asian J Neurosurg. 2021. Vol. 16, №3. P. 500-506. 21. Mollayeva T., Hurst M., Chan V. et al. Pre-injury health status and excess mortality in persons with traumatic brain injury: A decade-long historical cohort study. Prev Med. 2020. Vol. Vol. 139. P. 106213-1-106213-22. 22. Ng S.Y., Lee A.W. Traumatic Brain Injuries: Pathophysiology and Potential Therapeutic Targets. Front Cell Neurosci. 2019. Vol. 13. P. 528. 23. Papa L.., Edwards D., Ramia M. Exploring Serum Biomarkers for Mild Traumatic Brain Injury. In: Kobeissy FH, editor. Brain Neurotrauma: Molecular, Neuropsychological, and Rehabilitation Aspects. Boca Raton (FL): CRC Press/Taylor & Francis; 2015. Chapter 22. PMID: 26269900. 24. Pugazenthi S., Hernandez-Rovira M.A., Mitha R., Rogers J.L., Lavadi R.S., Kann M.R., Cardozo M.R., Hardi A., Elsayed G.A., Joseph J., Housley S.N., Agarwal N. Evaluating the state of non-invasive imaging biomarkers for traumatic brain injury. Neurosurg Rev. 2023 Sep 8.46(1):232. doi: 10.1007/s10143-023-02085-2. PMID: 37682375. 25. Ritter A.C., Wagner A.K., Szaflarski J.P. et al. Prognostic models for predicting posttraumatic seizures during acute hospitalization, and at 1 and 2 years following traumatic brain injury. Epilepsia. 2016. Vol. 57, №9. P. 1503-1514. 26. Rubin M.L., Yamal J.M., Chan W. et al. Prognosis of Six-Month Glasgow Outcome Scale in Severe Traumatic Brain Injury Using Hospital Admission Characteristics, Injury Severity Characteristics, and Physiological Monitoring during the First Day Post-Injury. J Neurotrauma. 2019. Vol. 36, №16. P. 2417-2422. 27. Slavoaca D., Birle C., Stan A. et al. Prediction of Neurocognitive Outcome after Moderate-Severe Traumatic Brain Injury Using Serum Neuron-Specific Enolase and S100 biomarkers. J Med Life. 2020. Vol. 13, Issue 3. P. 306-313. 28. Santacruz C.A., Vincent J.L. Bader A. et al. Association of cerebrospinal fluid protein biomarkers with outcomes in patients with traumatic and non-traumatic acute brain injury: systematic review of the literature. Crit Care. 2021. Vol. 25, Issue 1. P. 278-1-278-14. 29. Stawicki S.P., Wojda T.R., Nuschke J.D., Mubang R.N., Cipolla J., Hoff W.S., Hoey B.A., Thomas P.G. et al. Prognostication of traumatic brain injury outcomes in older trauma patients: A novel risk assessment tool based on initial cranial CT findings. Int J Crit Illn Inj Sci. 2017 Jan-Mar. 7(1):23-31. doi: 10.4103/IJCIIS.IJCIIS_2_17. PMID: 28382256; PMCID: PMC5364765. 30. Tang J., Wang X., Wan H., Lin C., Shao Z., Chang Y., Wang H., Wu Y., Zhang T., Du Y. Joint modeling strategy for using electronic medical records data to build machine learning models: an example of intracerebral hemorrhage. BMC Med Inform Decis Mak. 2022 Oct 25;22(1):278. doi: 10.1186/s12911-022-02018-x. PMID: 36284327; PMCID: PMC9594939. 31. Tsuchiya R., Ooigawa H., Kimura T., Tabata S., Maeda T., Sato H., Suzuki K., Ohara Y., Ooya Y,. Nemoto M, Kurita H. Study of certain easily available biochemical markers in prognostication in severe traumatic brain injury requiring surgery. Surg Neurol Int. 2023 Dec 1. 14:410. doi: 10.25259/SNI_544_2023. PMID: 38213429; PMCID: PMC10783664. 32. Thelin E., Al Nimer F., Frostell A. et al. A Serum Protein Biomarker Panel Improves Outcome Prediction in Human Traumatic Brain Injury. J Neurotrauma. 2019. Vol. 36, Issue 20. P. 2850-2862. 33. World Medical Association. World medical association declaration of Helsinki. Ethical principles for medical research involving human subjects. Bull World Health Organ. 2001. 79:373 34. Yin W., Weng S., Lai S. et al. GCS score combined with CT score and serum S100B protein level Can evaluate severity and early prognosis of acute traumatic brain injury. Nan Fang Yi Ke Da Xue Xue Bao. 2021. Vol. 41, №4. P. 543-548. 35. Yuh E.L., Jain S., Sun X. et al. Pathological Computed Tomography Features Associated With Adverse Outcomes After Mild Traumatic Brain Injury: A TRACK-TBI Study With External Validation in CENTER-TBI. JAMA Neurol. 2021. Vol. 78, Issue 9. P.1137-1148.
Количество просмотров: 396

Ключевые слова: Brain injury, forecasting, mathematical model.


Библиографическая ссылка

Sarkulova Zh.N., Tokshilykova A.B., Sarkulov M.N., Zhankulov M.B., Kalieva B.M., Daniyarova K.R., Zhuldyzbaeva Zh.Zh. Personalized mathematical model of outcome in patients with traumatic brain injuries // Nauka i Zdravookhranenie [Science & Healthcare]. 2024. Vol.26 (4), pp. 92-98. doi 10.34689/SH.2024.26.4.012

Авторизируйтесь для отправки комментариев