Online ISSN: 3007-0244,
Print ISSN:  2410-4280
CHARACTERIZING THE ROLE OF ABCG5/G8 IN SITOSTEROLEMIA: DIAGNOSTIC CHALLENGES IN DIFFERENTIATING FROM FAMILIAL HYPERCHOLESTEROLEMIA
Introduction. Sitosterolemia is a rare genetic disorder directly associated with dysfunction of ABCG5 and G8 genes. The data obtained was used to analyze the cellular mechanisms and the role of transporters in absorption and excretion of serum sterols. Thus, to understand the influence of mutations on the development of cardiovascular disease. Aim. To investigate the clinical manifestation between sitosterolemia and familial hypercholesterolemia (FH), focusing on how dysfunctions of transporters lead to the misdiagnosis of sitosterolemia as FH. Research Strategy. The data collection was conducted by searching research papers in English based on lipidology. The search strategy identified 118 papers, of which 42 were selected that meet established inclusion criteria: full-text publications in English, meta-analyses, cohort studies, experiments on mice, whereas established exclusion criteria: research papers in other languages, promotional articles, conferences, short reports. The research papers reviewed the span from 1970 to 2022. Results. Inactivation of genes causes the dysregulation of sterols. FH is characterized by elevated low-density lipoprotein cholesterol (LDL-C), whereas sitosterolemia presents with moderate elevation in LDL-C but dramatic increase in phytosterols. The phenotypic overlap between sitosterolemia and FH complicates detection. Both disorders manifest cardiovascular complications with elevated total cholesterol (TC) levels. The lipid profile distinguishes these conditions, necessitating HPLC, GC-MS tools. Genetic testing for mutations is essential for confirmation. The findings suggest that sitosterolemia mimics the FH state. FH is managed primarily with statins, while sitosterolemia requires ezetimibe. In addition, dietary modifications that reduce the intake of plant sterols are recommended. Conclusion. This review highlights ABCG5 and ABCG8 mutations that impair sterol transport, causing plant sterol accumulation. The condition often leads to xanthomas and early coronary artery disease. A major diagnostic challenge is the overlap with FH, as similar lipid abnormalities can obscure proper diagnosis.
Rassul D. Shokenov1, https://orcid.org/0009-0007-2867-3126 Tomiris K. Shakhmarova1,2, https://orcid.org/0009-0008-6884-3908 Zhanel Zh. Mirmanova1,2, https://orcid.org/0000-0002-0284-3891 Ayaulym Ye. Chamoieva1,2, https://orcid.org/0000-0003-0877-3537 Madina R. Zhalbinova1,2, https://orcid.org/0000-0001-9704-8913 Saule E. Rakhimova1,2, https://orcid.org/0000-0002-8245-2400 Makhabbat S. Bekbossynova3, https://orcid.org/0000-0003-2834-617X Ainur R. Akilzhanova1,2, https://orcid.org/0000-0001-6161-8355
1. Alves A.C., Benito-Vicente A., Medeiros A.M., Reeves K., Martin C., Bourbon M. Further evidence of novel APOB mutations as a cause of familial hypercholesterolaemia. Atherosclerosis. 2018. Vol. 277. pp. 448–456. 2. Bloch K. Sterol structure and membrane function. Current Topics in Cellular Regulation. 1981. Pp. 289–299. 3. Brinton E.A., Hopkins P.N., Hegele R.A., Geller A.S., Polisecki E.Y., Diffenderfer M.R., Schaefer E.J. The association between hypercholesterolemia and sitosterolemia, and report of a sitosterolemia kindred. Journal of Clinical Lipidology. 2017. Vol. 12, iss. 1. pp. 152–161. 4. Davis H.R., Zhu L., Hoos L.M., Tetzloff G., Maguire M., Liu J., Yao X., Iyer S.P.N., Lam M., Lund E.G., Detmers P.A., Graziano M.P., Altmann S.W. Niemann-Pick C1 like 1 (NPC1L1) is the intestinal phytosterol and cholesterol transporter and a key modulator of whole-body cholesterol homeostasis. Journal of Biological Chemistry. 2004. Vol. 279, iss. 32. Pp. 33586–33592. 5. Duan L., Wang H.H., Ohashi A., Wang D.Q. Role of intestinal sterol transporters Abcg5, Abcg8, and Npc1l1 in cholesterol absorption in mice: gender and age effects. AJP Gastrointestinal and Liver Physiology. 2005. Vol. 290, iss. 2. Pp. G269–G276. 6. Farhat D., Rezaei F., Ristovski M., Yang Y., Stancescu A., Dzimkova L., Samnani S., Couture J., Lee J. Structural analysis of cholesterol binding and sterol selectivity by ABCG5/G8. Journal of Molecular Biology. 2022. Vol. 434, iss. 20. pp. 167-795. 7. Gachumi G., El-Aneed A. Mass spectrometric approaches for the analysis of phytosterols in biological samples. Journal of Agricultural and Food Chemistry. 2017. Vol. 65, iss. 47. pp. 10141–10156. 8. Gälman C., Bonde Y., Matasconi M., Angelin B., Rudling M. Dramatically increased intestinal absorption of cholesterol following hypophysectomy is normalized by thyroid hormone. Gastroenterology. 2008. Vol. 134, iss. 4. pp. 1127–1136. 9. Goldstein J.L., Brown M.S. Binding and degradation of low density lipoproteins by cultured human fibroblasts. Journal of Biological Chemistry. 1974. Vol. 249, iss. 16. pp. 5153–5162. 10. Graf G.A., Li W., Gerard R.D., Gelissen I., White A., Cohen J.C., Hobbs H.H. Coexpression of ATP-binding cassette proteins ABCG5 and ABCG8 permits their transport to the apical surface Journal of Clinical Investigation. 2002. Vol. 110, iss. 5. pp. 659–669. 11. Hazard S.E., Patel S.B. Sterolins ABCG5 and ABCG8: regulators of whole body dietary sterols. Pflügers Archiv - European Journal of Physiology. 2006. Vol. 453, iss. 5. pp. 745–752. 12. Karpowich N., Martsinkevich O., Millen L., Yuan Y., Dai P.L., MacVey K., Thomas P.J., Hunt J.F. Crystal structures of the MJ1267 ATP binding cassette reveal an Induced-Fit effect at the ATPASE active site of an ABC transporter. Structure. 2001. Vol. 9, iss. 7. pp. 571–586. 13. Kidambi S., Patel S.B. Sitosterolaemia: pathophysiology, clinical presentation and laboratory diagnosis. Journal of Clinical Pathology. 2008. Vol. 61, no. 5. pp. 588–594. 14. Kopanos C., Tsiolkas V., Kouris A., Chapple C.E., Aguilera M.A., Meyer R., Massouras A. VarSome: the human genomic variant search engine. Bioinformatics. 2018. Vol. 35, iss. 11. pp. 1978–1980. 15. Lee J., Kinch L.N., Borek D.M., Wang J., Urbatsch I.L., Xie X., Grishin N.V., Cohen J.C., Otwinowski Z., Hobbs H.H., Rosenbaum D.M. Crystal structure of the human sterol transporter ABCG5/ABCG8. Nature. 2016. Vol. 533, iss. 7604. Pp. 561–564. 16. Lee M.-H., Lu K., Patel S.B. Genetic basis of sitosterolemia. Current Opinion in Lipidology. 2001. Vol. 12, iss. 2. pp. 141–149. 17. Lu K., Lee M., Hazard S., Brooks-Wilson A., Hidaka H., Kojima H., Ose L., Stalenhoef A.F., Mietinnen T., Bjorkhem I., Bruckert E., Pandya A., Brewer H.B., Salen G., Dean M., Srivastava A., Patel S.B. Two genes that map to the STSL locus cause sitosterolemia: genomic structure and spectrum of mutations involving sterolin-1 and sterolin-2, encoded by ABCG5 and ABCG8, respectively. The American Journal of Human Genetics. 2001. Vol. 69, iss. 2. pp. 278–290. 18. Miettinen T.A. Phytosterolaemia, xanthomatosis and premature atherosclerotic arterial disease: a case with high plant sterol absorption, impaired sterol elimination and low cholesterol synthesis. European Journal of Clinical Investigation. 1980. Vol. 10, iss. 1. pp. 27–35. 19. Miettinen T.A., Klett E.L., Gylling H., Isoniemi H., Patel S.B. Liver transplantation in a patient with sitosterolemia and cirrhosis. Gastroenterology. 2006. Vol. 130, iss. 2. pp. 542–547. 20. Nordestgaard B.G., Chapman M.J., Humphries S.E., Ginsberg H.N., Masana L., Descamps O.S., Wiklund O., Hegele R.A., Raal F.J., et al. Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: guidance for clinicians to prevent coronary heart disease: Consensus Statement of the European Atherosclerosis Society. European Heart Journal. 2013. Vol. 34, iss. 45. pp. 3478–3490. 21. Patel S.B., Salen G., Hidaka H., Kwiterovich P.O., Stalenhoef A.F., Miettinen T.A., Grundy S.M., Lee M.H., Rubenstein J.S., Polymeropoulos M.H., Brownstein M.J. Mapping a gene involved in regulating dietary cholesterol absorption. The sitosterolemia locus is found at chromosome 2p21. Journal of Clinical Investigation. 1998. Vol. 102, iss. 5. pp. 1041–1044. 22. Peet D.J., Turley S.D., Ma W., Janowski B.A., Lobaccaro J.A., Hammer R.E., Mangelsdorf D.J. Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXRα. Cell. 1998. Vol. 93, iss. 5. pp. 693–704. 23. Plosch T., Bloks V.W., Terasawa Y., Berdy S., Siegler K., van der Sluijs F., Kema I.P., Groen A.K., Shan B., Kuipers F., Schwartz M. Sitosterolemia in ABC-transporter G5-deficient mice is aggravated on activation of the liver-X receptor (Retraction of vol 126, pg 290, 2004). Gastroenterology. 2004. Vol. 126, iss. 3. pp. 944. 24. Qin M., Luo P., Wen X., Li J. Misdiagnosis of sitosterolemia in a patient as Evans syndrome and familial hypercholesterolemia. Journal of Clinical Lipidology. 2021. Vol. 16, iss. 1. pp. 33–39. 25. Rees D.C., Iolascon A., Carella M., O’Marcaigh A.S., Kendra J.R., Jowitt S.N., Wales J.K., Vora A., et al. Stomatocytic haemolysis and macrothrombocytopenia (Mediterranean stomatocytosis/macrothrombocytopenia) is the haematological presentation of phytosterolaemia. British Journal of Haematology. 2005. Vol. 130, iss. 2. pp. 297–309. 26. Repa J.J., Berge K.E., Pomajzl C., Richardson J.A., Hobbs H., Mangelsdorf D.J. Regulation of ATP-binding Cassette Sterol Transporters ABCG5 and ABCG8 by the Liver X Receptors α and β. Journal of Biological Chemistry. 2002. Vol. 277, iss. 21. pp. 18793–18800. 27. Salen G., Ahrens E.H., Grundy S.M. Metabolism of β-sitosterol in man. Journal of Clinical Investigation. 1970. Vol. 49, iss. 5. Pp. 952–967. 28. Salen G., Patel S., Batta A.K. Sitosterolemia. Cardiovascular Drug Reviews. 2002. Vol. 20, iss. 4. pp. 255–270. 29. Salen G., Starc T., Sisk C.M., Patel S.B. Intestinal cholesterol absorption inhibitor ezetimibe added to cholestyramine for sitosterolemia and xanthomatosis. Gastroenterology. 2006. Vol. 130, iss. 6. pp. 1853–1857. 30. Sberna A.L., Assem M., Gautier T., Grober J., Guiu B., Jeannin A., De Barros J.P., Athias A., Lagrost L., Masson D. Constitutive androstane receptor activation stimulates faecal bile acid excretion and reverse cholesterol transport in mice. Journal of Hepatology. 2010. Vol. 55, №1. pp. 154–161. 31. Tada H., Nohara A., Inazu A., Sakuma N., Mabuchi H., Kawashiri M. Sitosterolemia, hypercholesterolemia, and coronary artery disease. Journal of Atherosclerosis and Thrombosis. 2018. Vol. 25, iss. 9. pp. 783–789. 32. Tada H., Okada H., Nomura A., Yashiro S., Nohara A., Ishigaki Y., Takamura M., Kawashiri M. Rare and deleterious mutations in ABCG5/ABCG8 genes contribute to mimicking and worsening of familial hypercholesterolemia phenotype. Circulation Journal. 2019. Vol. 83, iss. 9. pp. 1917–1924. 33. Tada M.T., Rocha V.Z., Lima I.R., Oliveira T.G.M., Chacra A.P., Miname M.H., Nunes V.S., Nakandakare E.R., Castelo M.H.C.G., Jannes C.E., Santos R.D., Krieger J.E., Pereira A.C. Screening of ABCG5 and ABCG8 genes for sitosterolemia in a familial hypercholesterolemia cascade screening programp Circulation Genomic and Precision Medicine. 2022. Vol. 15, iss. 3. pp. 917–924. 34. Vrablik M., Tichý L., Freiberger T., Blaha V., Satny M., Hubacek J.A. Genetics of Familial Hypercholesterolemia: new insights. Frontiers in Genetics. 2020. Vol. 11. pp. 125–136. 35. Wang J., Einarsson C., Murphy C., Parini P., Björkhem I., Gåfvels M., Eggertsen G. Studies on LXR- and FXR-mediated effects on cholesterol homeostasis in normal and cholic acid-depleted mice. Journal of Lipid Research. 2005. Vol. 47, iss. 2. pp. 421–430. 36. Wang J., Grishin N.V., Kinch L., Cohen J.C., Hobbs H.H., Xie X. Sequences in the nonconsensus nucleotide-binding domain of ABCG5/ABCG8 required for sterol transport. Journal of Biological Chemistry. 2011. Vol. 286, iss. 9. pp. 7308–7314. 37. Wang J., Mitsche M.A., Lütjohann D., Cohen J.C., Xie X., Hobbs H.H. Relative roles of ABCG5/ABCG8 in liver and intestine. Journal of Lipid Research. 2014. Vol. 56, iss. 2. pp. 319–330. 38. Wang Z., Cao L., Su Y., Wang G., Wang R., Yu Z., Bai X., Ruan C. Specific macrothrombocytopenia/hemolytic anemia associated with sitosterolemia. American Journal of Hematology. 2013. Vol. 89, iss. 3. pp. 320–324. 39. Williams K., Segard A., Graf G.A. Sitosterolemia: Twenty years of discovery of the function of ABCG5ABCG8. International Journal of Molecular Sciences. 2021. Vol. 22, iss. 5. p. 2641. 40. Yu L., Gupta S., Xu F., Liverman A.D., Moschetta A., Mangelsdorf D.J., Repa J.J., Hobbs H.H., Cohen J.C. Expression of ABCG5 and ABCG8 is required for regulation of biliary cholesterol secretion. Journal of Biological Chemistry. 2004. Vol. 280, iss. 10. pp. 8742–8747. 41. Yu L., Von Bergmann K., Lutjohann D., Hobbs H.H., Cohen J.C. Selective sterol accumulation in ABCG5/ABCG8-deficient mice. Journal of Lipid Research. 2004. Vol. 45, iss. 2. pp. 301–307. 42. Zein A.A., Kaur R., Hussein T.O., Graf G.A., Lee J. ABCG5/G8: a structural view to pathophysiology of the hepatobiliary cholesterol secretion. Biochemical Society Transactions. 2019. Vol. 47, iss. 5. pp. 1259–1268.
Количество просмотров: 1898


Категория статей: Обзор литературы

Библиографическая ссылка

Shokenov R.D., Shakhmarova T.K., Mirmanova Zh.Zh., Chamoieva A.Ye., Zhalbinova M.R., Rakhimova S.E., Bekbossynova M.S., Akilzhanova A.R. Characterizing the Role of ABCG5/G8 in Sitosterolemia: Diagnostic Challenges in Differentiating from Familial Hypercholesterolemia // Nauka i Zdravookhranenie [Science & Healthcare]. 2024. Vol.26 (5), pp. 141-149. doi 10.34689/SH.2024.26.5.018

Авторизируйтесь для отправки комментариев