Online ISSN: 3007-0244,
Print ISSN:  2410-4280
ПРОГНОСТИЧЕСКАЯ ЗНАЧИМОСТЬ ГЕНЕТИЧЕСКИХ ОНКОМАРКЕРОВ НОВООБРАЗОВАНИЙ ЩИТОВИДНОЙ ЖЕЛЕЗЫ: ОБЗОР ЛИТЕРАТУРЫ
Актуальность. Настоящий обзор рассматривает последние достижения в области идентификации молекулярных маркеров посредством секвенирования нового поколения и использования микрочипов. Представлены и сопоставлены возможности применения данных онкомаркеров для дифференциации наиболее распространённых спорадических форм рака щитовидной железы. Публичные базы данных с наборами данных, полученными в результате высокопроизводительных экспериментов, являются ценным источником информации, которая помогает исследованиям онкомаркеров в целом, включая выявление молекулярных признаков опухолей щитовидной железы. Целью обзора является анализ хорошо зарекомендовавших себя тестов с особым акцентом на эффективную роль новых потенциальных онкомаркеров щитовидной железы, основанных на современных данных о молекулярно-генетических механизмах, вовлечённых в опухолевый процесс. Стратегия поиска. Для проведения исследования были проанализированы статьи, находящиеся в открытом доступе, с использованием следующих баз данных и специализированных поисковых систем научных публикаций: PubMed, Web of Science, Scopus, Google Scholar, Cochrane Library. Критерии включения: публикации с высоким уровнем доказательности (уровень A и B), включающие мета-анализы, систематические обзоры и поперечные исследования. Исключены короткие отчёты, рекламные статьи. Результаты и выводы. Литературный обзор посвящен проблеме прогностической значимости генетических онкомаркеров опухолей щитовидной железы. Представлены различные виды онкомаркеров опухолей щитовидной железы, в том числе и онкомаркеры доброкачественных новообразований. Обоснована значимость онкомаркеров опухолей щитовидной железы. Ключевые слова: маркеры опухолей щитовидной железы, маркеры, опухоль щитовидной железы, диагностическая ценность маркеров щитовидной железы
Майра Ж. Еспенбетова1, https://orcid.org/0000-0003-2318-4765 Аида М. Бидахметова1, https://orcid.org/0009-0001-1245-4275 Айнур С. Крыкпаева1, https://orcid.org/0000-0001-7701-9832 Лаура Б. Уашева2, https://orcid.org/0009-0002-4009-8893 Марат К. Сыздыкбаев1, https://orcid.org/0000-0002-0561-4111 Алмагуль А. Баймуханова3, Арайлым Б. Бауржан2,
Дроздович В., Шонфельд С., Акимжанов К., Алдынгуров Д., Лэнд С.Е., др. Поведение и структура потребления продуктов питания населения, подвергшегося в 1949-1962 годах воздействию радиоактивных осадков Семипалатинского ядерного полигона в Казахстане. Радиационная экология и биофизика. 2011. Март, 50(1):91-103. 2. Казубская Т.П., Козлова В.М., Кондратьева Т.Т., и др. Фолликулярно-клеточный (папиллярный и фолликулярный) рак щитовидной железы, генетическая обусловленность и молекулярные маркеры диагностики. Архив патологии. 2014. 76(5):3 12. 3. Якушина В.Д., Лернер Л.В., Казубская Т.П., Кондратьева Т.Т., Субраманиан С., Лавров А.В. Молекулярно-генетическая структура фолликулярно-клеточного рака щитовидной железы. Клиническая и экспериментальная тиреоидология. 2016. 12(2):55-64. 4. Ali S.Z., Siperstein A., Sadow P.M., Golding A.C., Kennedy G.C., Kloos R.T., Ladenson P.W. Extending expressed RNA genomics from surgical decision making for cytologically indeterminate thyroid nodules to targeting therapies for metastatic thyroid cancer. Cancer Cytopathol. 2019. T. 127, № 6. C. 362-369. 5. Angell T.E., Wirth L.J., Cabanillas M.E., Shindo M.L., Cibas E.S., Babiarz J.E., Hao Y., Kim S.Y., Walsh P.S., Huang J., Kloos R. T., Kennedy G. C., Waguespack S.G. Analytical and Clinical Validation of Expressed Variants and Fusions From the Whole Transcriptome of Thyroid FNA Samples. Front Endocrinol (Lausanne). 2019. T.10. C. 612. 6. Beaudenon-Huibregtse S., Alexander E.K., Guttler R.B., Hershman J.M., Babu V., Blevins T.C., Moore P., Andruss B., Labourier E. Centralized molecular testing for oncogenic gene mutations complements the local cytopathologic diagnosis of thyroid nodules. Thyroid. 2014, 24, 1479–1487. 7. Benjamin H., Schnitzer-Perlman T., Shtabsky A. et al. Analytical validity of a microRNA-based assay for diagnosing indeterminate thyroid FNA smears from routinely prepared cytology slides. Cancer Cytopathol. 2016. doi: 10.1002/cncy.21731. 8. Buryk M.A., Monaco S.E., Witchel S.F. et al. Preoperative cytology with molecular analysis to help guide surgery for pediatric thyroid nodules. Int J Pediatr Otorhinolaryngol. 2013. 77(10):1697-1700. doi: 10.1016/j.ijporl.2013.07.029 9. Cancer Genome Atlas Research N. Integrated genomic characterization of papillary thyroid carcinoma. Cell. 2014. T. 159, № 3. C. 676-90. 10. Ciarletto A.M., Narick C., Malchoff C.D., Massoll N.A., Labourier E., Haugh K., Mireskandari A., Finkelstein S.D., Kumar G. Analytical and clinical validation of pairwise microRNA expression analysis to identify medullary thyroid cancer in thyroid fine‐needle aspiration samples. Cancer cytopathology. 2021. T. 129, № 3. C. 239-249. 11. Ciampi R., Romei C., Pieruzzi L. et al. Classical point mutations of RET, BRAF and RAS oncogenes are not shared in papillary and medullary thyroid cancer occurring simultaneously in the same gland. J Endocrinol Invest. 2017. 40(1):55-62. doi: 10.1007/s40618-016-0526-5. 12. de Morais Fernandes F.C.G., de Souza D.L.B., Curado M.P., de Souza T.A., de Almeida Medeiros A., Barbosa I.R. Incidence and mortality from thyroid cancer in Latin America. Trop Med Int Health. 2021. 26(7):800-809. doi:10.1111/tmi.13585 1. 13. Drozdovitch V. Radiation exposure to the thyroid after the Chernobyl accident. Frontiers in endocrinology. 2021. Т. 11. С. 569041 3. 14. Duan H., Liu X., Ren X., Zhang H., Wu H., Liang Z. Mutation profiles of follicular thyroid tumors by targeted sequencing. Diagn. Pathol. 2019,14, 39. 15. Eszlinger M., Piana S., Moll A. et al. Molecular testing of thyroid fine-needle aspirations improves pre-surgical diagnosis and supports the histologic identification of minimally invasive follicular thyroid carcinomas. Thyroid 2015. 25: 401–409. 16. Filetti S., Durante C., Hartl D. et al. Thyroid cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up†. Ann Oncol. 2019. 30(12):1856-1883. doi:10.1093/annonc/mdz400 17. Finkelstein S.D., Sistrunk J.W., Malchoff C., Thompson D.V., Kumar G., Timmaraju V.A., Repko B., Mireskandari A., Evoy-Goodman L.A., Massoll N.A. A retrospective evaluation of the diagnostic performance of an interdependent pairwise MicroRNA expression analysis with a mutation panel in indeterminate thyroid nodules. Thyroid. 2022. T. 32, № 11. C. 1362-1371. 18. Franco A.T., Labourier E., Ablordeppey K.K., Surrey L.F., Mostoufi‐Moab S., Isaza A., Adzick N.S., Kazahaya K., Kumar G., Bauer A.J. miRNA expression can classify pediatric thyroid lesions and increases the diagnostic yield of mutation testing. Pediatric Blood & Cancer. 2020. T. 67, № 6. C. e28276. 19. Giordano T.J.; Beaudenon-Huibregtse S.; Shinde R., Langfield L., Vinco M., Laosinchai-Wolf W., Labourier E. Molecular testing for oncogenic gene mutations in thyroid lesions: A case-control validation study in 413 postsurgical specimens.Hum. Pathol 2014,45, 1339–1347 20. Gupta N., Dasyam A., Carty S.E. et al. RAS mutations in thyroid FNA specimens are highly predictive of predominantly low risk follicular- pattern cancers. J Clin Endocrinol Metab. 2013;98:E914–E922. doi: 10.1210/jc.2012-3396. 21. Gupta N., Dasyam A.K., Carty S.E., et al. RAS mutations in thyroid FNA specimens are highly predictive of predominantly low-risk follicular-pattern cancers. J Clin Endocrinol Metab. 2013;98(5). doi: 10.1210/jc.2012-3396. 22. Jackson S., Kumar G., Banizs A. B., Toney N., Silverman J. F., Narick C. M., Finkelstein S. D. Incremental utility of expanded mutation panel when used in combination with microRNA classification in indeterminate thyroid nodules. Diagnostic cytopathology. 2020. T. 48, № 1. C. 43-52. 23. Hescot S., Al Ghuzlan A., Henry T., Sheikh-Alard H., Lamartina L., Borget I., Hadoux J., Baudin E., Dupuy C., Nikitski A.V., Nikiforov Y. E., Schlumberger M., Nikiforova M. N., Leboulleux S. Prognostic of recurrence and survival in poorly differentiated thyroid cancer. Endocr Relat Cancer. 2022. T. 29, № 11. C. 625-634. 24. Hlozek J., Pekova B., Rotnagl J., Holy R., Astl J. Genetic Changes in Thyroid Cancers and the Importance of Their Preoperative Detection in Relation to the General Treatment and Determination of the Extent of Surgical Intervention-A Review. Biomedicines. 2022. T. 10, № 7. 25. Hu M.I., Waguespack S.G., Dosiou C., Ladenson P.W., Livhits M.J., Wirth L. J., Sadow P. M., Krane J.F., et al. Afirma Genomic Sequencing Classifier and Xpression Atlas Molecular Findings in Consecutive Bethesda III-VI Thyroid Nodules J Clin Endocrinol Metab. 2021. T. 106, № 8. C. 2198-2207. 26. Hu M.I., Waguespack S.G., Dosiou C., Ladenson P.W., Livhits M.J., et al. Afirma genomic sequencing classifier and Xpression atlas molecular findings in consecutive Bethesda III-VI thyroid nodules. The Journal of Clinical Endocrinology & Metabolism. 2021. T. 106, № 8. ‒ C. 2198-2207. 27. Krane J.F., Cibas E.S., Endo M., Marqusee E., Hu M.I., Nasr C.E., Waguespack S., Wirth L.J., Kloos R.T. The Afirma Xpression Atlas for thyroid nodules and thyroid cancer metastases: Insights to inform clinical decision-making from a fine-needle aspiration sample. Cancer Cytpathol. 2020. T. 128, № 7. C. 452-459. 28. Keutgen X.M., Filicori F., Crowley M.J. et al. A panel of four miRNAs accurately differentiates malignant from benign indeterminate thyroid lesions on fine needle aspiration. Clin Cancer Res. 2012.18(7):2032-2038. doi: 10.1158/1078-0432.CCR-11-2487 29. Krane J.F., Cibas E.S., Alexander E.K., Paschke R., Eszlinger M. Molecular analysis of residual ThinPrep material from thyroid FNAs increases diagnostic sensitivity. Cancer Cytopathol 2015;123: 356–361. 30. Labourier E., Fahey T.J. Preoperative molecular testing in thyroid nodules with Bethesda VI cytology: Clinical experience and review of the literature. Diagn Cytopathol. 2021. T. 49, № 4. C. E175-E180. 31. Liu S., Gao A., Zhang B., Zhang Z., et al. Assessment of molecular testing in fine-needle aspiration biopsy samples: An experience in a Chinese population. Exp. Mol. Pathol.2014,97, 292–297 32. Maeda S. et al. Accuracy of thyroid cancer diagnosis and surgery in patients with thyroid cancer may be affected by the Semipalatinsk Nuclear Test Site: A collaboration between Nagasaki (Japan) and Semipalatinsk (Kazakhstan) medical centers. Acta medica Nagasakiensia. 2021. Т. 64. №. 3. С. 77-80 33. Marotta V., Bifulco M., Vitale M. Significance of RAS Mutations in Thyroid Benign Nodules and Non-Medullary Thyroid Cancer.Cancers 2021, 13, 3785. https://doi.org/10.3390/cancers13153785 34. Milosevic Z., Pesic M., Stankovic T. et al. Targeting RAS-MAPK-ERK and PI3K-AKT-mTOR signal transduction pathways to chemosensitize anaplastic thyroid carcinoma. Transl Res. 2014 Nov. 164(5):411-23. doi: 10.1016/j.trsl.2014.06.005. 35. Monaco S.E., Pantanowitz L., Khalbuss W.E. et al. Cytomorphological and molecular genetic findings in pediatric thyroid fine-needle aspiration. Cancer Cytopathol. 2012.120(5):342-350. doi: 10.1002/cncy.21199. 36. Moses W., Weng J., Sansano I. et al. Molecular testing for somatic mutations improves the accuracy of thyroid fine-needle aspiration biopsy. World J Surg. 2010. 34:2589–2594. doi: 10.1007/s00268- 010-0720-0. 37. Nagayama Y., Mishima H. Heterogenous nature of gene expression patterns in BRAF-like papillary thyroid carcinomas with BRAF(V600E). Endocrine. 2019 Dec. 66(3):607-613. doi: 10.1007/ s12020-019-02063-z 38. Niciporuka R., Nazarovs J., Ozolins A., Narbuts Z., Miklasevics E., Gardovskis J. Can We Predict Differentiated Thyroid Cancer Behavior? Role of Genetic and Molecular Markers. Medicina (Kaunas). 2021. T. 57, № 10. P.52-59. 39. Nikiforov Y.E., Steward D.L., Robinson-Smith T.M., Haugen B.R., et al. Molecular testing for mutations in improving the fine-needle aspiration diagnosis of thyroid nodules. The Journal of Clinical Endocrinology & Metabolism. 2009. T. 94, № 6. C. 2092-2098. 40. Nikiforov Y.E., Ohori N.P., Hodak S.P. et al. Impact of mutational testing on the diagnosis and management of patients with cytologically indeterminate thyroid nodules: A prospective analysis of 1056 FNA samples. J Clin Endocrinol Metab. 2011. 96:3390–3397. doi: 10.1210/jc.2011–1469. 41. Nikiforov Y.E., Carty S.E., Chiosea, S.I., Coyne C.; DuvvuriU.; Ferris, et al. Highly accurate diagnosis of cancer in thyroid nodules with follicular neoplasm/suspicious for a follicular neoplasm cytology by ThyroSeq v2 next-generation sequencing assay. Cancer 2014, 120, 3627–3634 42. Nikiforov Y.E., Seethala R.R. RAS mutations in thyroid nodules: Molecular diagnostics and clinical implications. Surgery, 2016. 160(1), 77-88. https://doi.org/10.1016/j.surg.2016.04.054 43. Nikiforov Y.E., Carty S.E., Chiosea S.I. et al. Highly accurate diagnosis of cancer in thyroid nodules with follicular neoplasm/suspicious for a follicular neoplasm cytology by ThyroSeq v2 next-generation sequencing assay. Cancer. 2014. 120(23):3627-3634. doi: 10.1002/cncr.29038. 44. Ohori N.P., Singhal R., Nikiforova M.N. et al. BRAF mutation detection in indeterminate thyroid cytology specimens: underlying cytologic, molecular, and pathologic characteristics of papillary thyroid carcinoma. Cancer (Cancer Cytopathol). 2013. 121: 197-205 45. Onenerk A.M., Pusztaszeri M.P., Canberk S., Faquin W.C. Triage of the indeterminate thyroid aspirate: What are the options for the practicing cytopathologist? Cancer Cytopathol. 2017. T. 125, № S6. C. 477-485. 46. Ohori N.P., Schoedel K.E. Variability in the atypia of undetermined significance/follicular lesion of undetermined significance diagnosis in the Bethesda System for Reporting Thyroid Cytopathology: sources and recommendations. Acta Cytol. 2011. 55:492-498. 47. Park J., An S., Kim K., Bae J.S., Kim J.S. BRAFV600E Positivity-Dependent Effect of Age on Papillary Thyroid Cancer Recurrence Risk. Cancers (Basel). 2023 Nov 13. 15(22):5395. doi: 10.3390/cancers15225395. PMID: 38001654. PMCID: PMC10670702. 48. Paschke R., Cantara S., Crescenzi A., Jarzab B., Musholt T., Sobrinho Simoes M. European Thyroid Association Guidelines regarding Thyroid Nodule Molecular Fine-Needle Aspiration Cytology Diagnostics. European Thyroid Journal, 2017. 6(3), 115-129. Retrieved Oct 29, 2024, https://doi.org/10.1159/000468519] 49. Puzziello A., Guerra A., Murino A. et al. Benign thyroid nodules with RAS mutation grow faster. Clin Endocrinol (Oxf). 2016. 84(5):736-740. doi: 10.1111/cen.12875 50. Saenko V., Mitsutake N. Radiation-Related Thyroid Cancer. Endocr Rev. 2024. 45(1):1-29. doi:10.1210/endrev/bnad0222. 51. Shen X., Liu R., Xing M. A six-genotype genetic prognostic model for papillary thyroid cancer. Endocr. Relat. Cancer. 2017, 24, 41–52. 52. Skaugen J.M., Taneja C. et al. Performance of a Multigene Genomic Classifier in Thyroid Nodules with Suspicious for Malignancy Cytology. Thyroid. 2022. T. 32, № 12. C. 1500-1508. 53. Song Y.S., Won J.K., Yoo S.K. Jung K.C. et al. Comprehensive Transcriptomic and Genomic Profiling of Subtypes of Follicular Variant of Papillary Thyroid Carcinoma.Thyroid. 2018. 28, 1468–1478.] 54. Steward D.L., Carty S.E., Sippel R.S., Yang S.P., Sosa J.A., Sipos J.A. et al. Performance of a multigene genomic classifier in thyroid nodules with indeterminate cytology: a prospective blinded multicenter study. JAMA oncology. 2019. T. 5, № 2. C. 204-212. 55. Tang A.L., Kloos R.T., Aunins B., Holm T.M., Roth M.Y. et al/. Pathologic Features Associated With Molecular Subtypes of Well-Differentiated Thyroid Cancer. Endocr Pract. 2021. T. 27, № 3. C. 206-211. 56.Xing M. Molecular pathogenesis and mechanisms of thyroid cancer. Nat Rev Cancer. 2013. 13:184-199. 57. Xing M. Clinical utility of RAS mutations in thyroid cancer: a blurred picture now emerging clearer. BMC Med. 2016 Jan 27. 14:12. doi: 10.1186/s12916-016-0559-9. PMID: 26817707; PMCID: PMC4730731 58.Yan Liu, Leslie Cope, Wenyue Sun, Yongchun Wang et al. DNA Copy Number Variations Characterize Benign and Malignant Thyroid Tumors, The Journal of Clinical Endocrinology & Metabolism, Volume 98, Issue 3, 01.03.2013, pp. E558–E566 59. Yarchoan M., LiVolsi V.A., Brose M.S. BRAF Mutation and Thyroid Cancer Recurrence. J Clin Oncol. 2015. 33(1):7–8. doi: 10.1200/JCO.2014.59.3657. 60. Yip L., Wharry L.I., Armstrong M.J. et al. A clinical algorithm for fine-needle aspiration molecular testing effectively guides the appropriate extent of initial thyroidectomy. Ann Surg. 2014;260(1):163-168. doi: 10.1097/SLA.0000000000000215 61. Yoo S.K., Lee S., Kim S.J., Jee H.G., Kim B.A. Comprehensive Analysis of the Transcriptional and Mutational Landscape of Follicular and Papillary Thyroid Cancers. PLoS Genet. 2016. T.12, № 8. C. e1006239. 62. Zhao L., Dias-Santagata D., Sadow P.M., Faquin W.C. Cytological, molecular, and clinical features of noninvasive follicular thyroid neoplasm with papillary-like nuclear features versus invasive forms of follicular variant of papillary thyroid carcinoma. Cancer Cytopathol. 2017, 125, 323–331.
Количество просмотров: 35

Ключевые слова:

Категория статей: Обзор литературы

Библиографическая ссылка

Еспенбетова М.Ж., Бидахметова А.М., Крыкпаева А.С., Уашева Л.Б., Сыздыкбаев М.К., Баймуханова А.А., Бауржан А.Б. Прогностическая значимость генетических онкомаркеров новообразований щитовидной железы: обзор литературы // Наука и Здравоохранение. 2024. Т.26 (5). С. 204-212. doi 10.34689/SH.2024.26.5.024

Авторизируйтесь для отправки комментариев