THE IMPACT OF GENE MUTATIONS IN THYROID CANCER: A REVIEW
Introduction: Thyroid cancer is a common endocrine malignancy, with DICER1 mutations emerging as significant contributors to its development and progression. The identification of these mutations through molecular genetic analysis, particularly in poorly differentiated thyroid carcinomas and pediatric follicular thyroid carcinomas, has provided valuable insights into the pathophysiological mechanisms underlying the disease. Studies by Volante et al. and Lee et al. have highlighted the importance of genetic testing for DICER1 mutations in guiding clinical management, enabling more precise risk stratification, and tailoring patient-specific therapeutic approaches. Despite these advances, critical gaps remain in our understanding of the full spectrum of DICER1-associated phenotypes and the molecular mechanisms involved. Future research is needed to elucidate the biological pathways influenced by DICER1 mutations and to explore the potential for targeted therapies. Additionally, developing strategies for early detection and personalized treatment plans based on genetic profiles could significantly improve patient outcomes.
This review aims to analyze publications devoted to the significant role of DICER1 mutations in thyroid cancer.
Search strategy: The literature search was performed in the electronic databases PubMed, WoS, Scopus, Google Scholar over the past 10 years: from 2014 to 2024, but information about topic (the Impact of DICER1 Mutations on Thyroid Cancer) was not full. Most of valuable information which is described the problem founded in databases were from 2005-2007, 2009, 2011-2013, they was included to review. These sources do not fall into the specified depth, but were accepted for analysis because they contain conceptual information. Criteria for inclusion of publications in the review: publications in full text access in Russian and English, bearing statistically confirmed conclusions. Exclusion criteria: abstracts of reports, newspaper publications, paid access articles, personal communications.
Results: This review synthesizes current insights into the mechanisms of formation of the DICER1 gene mutation. Despite these advances, there is no complete spectrum of DICER1-related phenotypes and molecular mechanisms involved in this process. Further research is needed to clarify the biological pathways affected by DICER1 mutations and explore the potential of targeted therapies. In addition, the development of early detection strategies and personalized treatment plans based on genetic profiles can significantly improve patient outcomes. This review highlights the need for continued research on DICER1 gene mutations to fully exploit their potential in improving the diagnosis, management and treatment of thyroid cancer.
Conclusions: The presented data allow us to formulate a clinical and pathophysiological approach to the clinic and treatment of thyroid cancer. Conducting genetic analysis for DICER1 gene mutations can lead to the development of personalized and effective treatment plans. The study of DICER1 mutations will improve patient outcomes by improving the approach to the diagnosis and treatment of thyroid cancer. Thus, the detection of the presence of a DICER1 gene mutation in thyroid cancer is an important part in the management of patients with thyroid cancer, which will also improve the outcome of the disease.
Mussazhanova Zh.B.– associated professor, phD Al-Farabi Kazakh National University, Almaty, Kazakhstan e-mail: mussazhanova.zh@gmail.com; Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, https://orcid.org/0000-0002-7315-7725, Nagasaki, Japan
Dushimova Z.D. – k.m.s. in department of fundamental medicinemedical department and healthcare, https://orcid.org/0000-0003-0791-4246, Al-Farabi Kazakh National University, e-mail: dushimova.zaure@kaznu.edu.kz, Almaty, Kazakhstan
Kozykenova Zh.Y. – phD, head of department pathological physiology, https://orcid.org/0000-0001-7420-2279, NCJSC "Semey Medical University, e-mail: zhanna.kozykenova@smu.edu.kz, Semey, Republic of Kazakhstan
Pak L.A. - professor, phD head of Department of Clinical Oncology and Nuclear Medicine https://orcid.org/0000-0002-5249-3359, NCJSC "Semey Medical University," e-mail: laura.pak@smu.edu.kz, Semey, Republic of Kazakhstan
Toktabayeva B.Zh. – Candidate of Medical Sciences, Acting Associate Professor, Department of Propaedeutics of Children's Diseases NCJSC «Semey Medical University», 103 Abay street, Semey, 071400, Kazakhstan; Email:bakytkul.toktabayeva@smu.edu.kz; Phone number:+7(701)150-84-20. https://orcid.org/0000-0001-5899-1247
Zhazykbayeva L.K. – k.m.s internal diseases department, https://orcid.org/0000-0001-6529-284X, NCJSC "Semey Medical University," e-mail: lashyn.zhazykbayeva@smu.edu.kz, Semey, Republic of Kazakhstan
Rakhmankulova A.M. - a PhD student of the Department of Clinical Oncology and Nuclear Medicine, https://orcid.org/0000-0003-3307-413X, NCJSC "Semey Medical University," e-mail: rakhmankulova.aidana1992@gmail.com, Semey, the Republic of Kazakhstan;
Corresponding Author:
Yerketayeva A.Kh. – a Ph.D. student of the Department of Clinical Oncology and Nuclear Medicine, NCJSC "Semey Medical University," Semey, Republic of Kazakhstan
Address: 071400, Republic of Kazakhstan, Semey, Semey, Abay Street, 103.
E-mail: aki04121994@gmail.com
Phone: + 7 775 722 60 91.
1. Apellaniz-Ruiz M., de Kock, L., Sabbaghian N., Guaraldi F., Ghizzoni L., Beccuti G., Foulkes, W.D. Familial multinodular goiter and Sertoli-Leydig cell tumors associated with a large intragenic in-frame DICER1 deletion. European Journal of Endocrinology, 2018. 178(2), K11–K19. https://doi.org/10.1530/EJE-17-0904.
2. Bahubeshi A., Bal N., Rio Frio T. DICER1 mutations in a broad range of follicular cell-derived thyroid cancers: Genetic and clinical implications. J Clin Endocrinol Metab, 2011. 96(9).
3. Blokzijl F., de Ligt J., Jager M., Sasselli V., Roerink S., Sasaki N., van Boxtel R. Tissue-specific mutation accumulation in human adult stem cells during life. Nature, 2016. 538 (7624), 260–264. https://doi.org/10.1038/nature19768.
4. Brenneman M., Field A., Yang J., Williams G., Doros L., Rossi C., Hill .A. Temporal order of RNase IIIb and loss-of-function mutations during development determines phenotype in pleuropulmonary blastoma/DICER1 syndrome: A unique variant of the two-hit tumor suppression model. F1000 Research, 2015. 214. https://doi.org/10.12688/f1000research.
5. Burger K., Gullerova M. Swiss army knives: Non-canonical functions of nuclear Drosha and Dicer. Nature Re s Molecular Cell Biology, 2015.16(7), 417–430. https://doi.org/10.1038/nrm3994.
6. Chen J., Wang Y., Monechy M.K., Anglesio M.S., Yang W., Senz J., Huntsman D.G. Recurrent DICER1 hotspot mutations in endometrial tumours and their impact on microRNA biogenesis. Journal of Pathology, 2015. 237(2), 215–225. https://doi.org/10.1002/path.4569.
7. Consoli C., Moss C., Green S., Balderson D., Cooper D.N., Upadhyaya M. Gonosomal mosaicism for a nonsense mutation (R1947X) in the NF1 gene in segmental neurofibromatosis type 1. Journal of Investigative Dermatology, 2005. 125(3), 463–466. https://doi.org/10.1111/j.0022-202X.2005.23834.x.
8. Cooper D.S., Doherty G.M., Haugen B.R. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer." Thyroid, 2009. 19(11):1167-1214.
9. Davies L., Welch H.G. Increasing incidence of thyroid cancer in the United States, 1973-2002. JAMA, 2006. 295(18):2164-2167.
10. De Kock L., Wu V.R., Foulkes W.D. Ten years of DICER1 mutations: Provelance, distribution and associated phenotypes. Hum Mutant, 2019; 40(11) 1939-53.
11. De Kock L., Geoffrion, D., Rivera, B., Wagener, R., Sabbaghian, N., Bens, S., Foulkes, W.D. Multiple DICER1-related tumors in a child with a large interstitial 14q32 deletion. Genes, Chromosomes Cancer, 2018. 57(5), 223–230. https://doi.org/10.1002/gcc.22523.
12. De Kock L., Hillmer M., Wagener R., Soglio D. B., Sabbaghian N., Siebert R., Foulkes W.D. Further evidence that full gene deletions of DICER1 predispose to DICER1 syndrome. Genes Chromosomes Cancer, 2019. 58(8), 602–604. https://doi.org/10.1002/gcc.22728.
13. De Kock L., Priest J.R., Foulkes W.D., Alexandrescu S. An update on the central nervous system manifestations of DICER1 syndrome. Acta Neuropathologica, 2019. https://doi.org/10.1007/s00401-019-01997-y.
14. De Kock L., Rivera B., Revil T., Thorner P., Goudie C., Bouron-Dal Soglio D., Foulkes W.D. Sequencing of DICER1 in sarcomas identifies biallelic somatic DICER1 mutations in an adult-onset embryonal rhabdomyosarcoma. British Journal of Cancer, 2017. 116 (12), 1621–1626. https://doi.org/10.1038/bjc.2017.147.
15. De Kock L., Sabbaghian N., Druker H., Weber E., Hamel N., Miller S., Foulkes W.D. Germ-line and somatic DICER1 mutations in pineoblastoma. Acta Neuropathologica, 2014. 128(4), 583–595. https://doi.org/10.1007/s00401-014-1318-7.
16. De Kock L., Terzic T., McCluggage W.G., Stewart C. J.R., Shaw P., Foulkes, W.D., Clarke, B.A. DICER1 mutations are consistently present in moderately and poorly differentiated Sertoli-Leydig cell tumors. The American Journal of Surgical Pathology, 2017. 41(9), 1178–1187. https://doi.org/10.1097/PAS.0000000000000895.
17. De Kock Ldo., Wang Y.C., Revil T., Badescu D., Rivera B., Sabbaghian N., Foulkes W.D. High-sensitivity sequencing reveals multi-organ somatic mosaicism causing DICER1 syndrome. Journal of Medical Genetics, 2016. 53(1), 43–52. https://doi.org/10.1136/jmedgenet-2015-103428.
18. Domchek S.M., Tang J., Stopfer J., Lilli D.R., Hamel N., Tischkowitz M., Greenberg R.A. Biallelic deleterious BRCA1 mutations in a woman with early-onset ovarian cancer. Cancer Discovery, 2013. 3(4), 399–405. https://doi.org/10.1158/2159-8290.Cd-12-0421.
19. Evans, D. R. Neurofibromatosis type 2 (NF2): A clinical and molecular re. Orphanet Journal of Rare Diseases, 2009. 4, 16. https://doi.org/10.1186/1750-1172-4-16.
20. Findlay G.M., Daza R.M., Martin B., Zhang M.D., Leith A.P., Gasperini M., Shendure, J. Accurate classification of BRCA1 variants with saturation genome editing. Nature, 2018. 562(7726), 217–222. https://doi.org/10.1038/s41586-018-0461-z.
21. Foulkes W.D., Priest J.R., Duchaine T.F. DICER1: Mutations, microRNAs and mechanisms. Nat Rev Cancer, 2014. 14(10):662-672.
22. Foulkes W.D., Gore M., Cluggage W.G. Rare non-epithelial ovarian neoplasms: Pathology, genetics and treatment. Gynecologic Oncology, 2016. 142, 190–198. https://doi.org/10.1016/j.ygyno.2016.04.005.
23. Foulkes W. D., Priest, J. R., Duchaine T. F. DICER1: Mutations, microRNAs and mechanisms. Nature Re s Cancer, 2014. 14(10), 662–672. https://doi.org/10.1038/nrc3802.
24. Gurtan A.M., Lu, V., Bhutkar A., Sharp P.A. In vivo structure-function analysis of human Dicer reveals directional processing of precursor miRNAs. RNA, 2012. 18(6), 1116–1122. https://doi.org/10.1261/rna.032680.112.
25. Heravi-Moussavi A., Anglesio M.S., Cheng S.W. G., Senz J., Yang W., Prentice L., Huntsman D. G. Recurrent somatic DICER1 mutations in nonepithelial ovarian cancers. New England Journal of Medicine, 2012. 366(3), 234–242. https://doi.org/10.1056/NEJMoa1102903.
26. Herriges J.C., Brown S., Longhurst M., Ozmore J., Moeschler J.B., Janze A., Andersen E.F. Identification of two 14q32 deletions involving DICER1 associated with the development of DICER1-related tumors. European Journal of Medical Genetics, 2019. 62, 9–14. https://doi.org/10.1016/j.ejmg.2018.04.011.
27. Hes F.J., Nielsen M., Bik E.C., Konvalinka D., Wijnen J.T., Bakker E., Tops C.M.J. Somatic APC mosaicism: An underestimated cause of polyposis coli. Gut, 2007. 57(1), 71–76. https://doi.org/10.1136/gut.2006.117796.
28. Hill D.A., Ivanovich J., Priest J.R. DICER1 mutations in familial thyroid cancer: Clinical and molecular features. Thyroid, 2011. 21(10):1233-1241.
29. Hill D.A., Ivanovich J., Priest J.R., Gurnett C. A., Dehner L.P., Desruisseau D., Goodfellow P.J. DICER1 mutations in familial pleuropulmonary blastoma. Science, 2009. 325(5943), 965. https://doi.org/10.1126/science.1174334
30. Hu W., Coller J. What comes first: Translational repression or mRNA degradation? The deepening mystery of microRNA function. Cell Research, 2012. 22(9), 1322–1324. https://doi.org/10.1038/cr.2012.80.
31. Huryn L.A., Turriff A., Harney L.A., Carr A.G., Chevez-Barrios P., Gombos D.S., Stewart, D.R. DICER1 syndrome. Ophthalmology, 2019. 126, 296–304. https://doi.org/10.1016/j.ophtha.2018.09.038.
32. Ibrahimpasic T, Xu B., Landa I. Genomic alterations in fatal forms of non-anaplastic thyroid cancer: Identification of MED12 and FGF3/4 amplifications as candidate drivers. Sci Rep, 2015. 5:11332.
33. Khan N.E., Bauer A.J., Doros, L., Schultz K.A.P., Decastro R.M., Harney, L.A., Stewart, D. R. Macrocephaly associated with the DICER1 syndrome. Genetics in Medicine, 2016. 19, 244–248. https://doi.org/10.1038/gim.2016.83.
34. Khan N.E., Lin, A., Raske M.E., Harney L.A., Carr A.G., Field A., Stewart D.R. Structural renal abnormalities in the DICER1 syndrome: A family-based cohort study. Pediatric Nephrology, 2018. 33(12), 2281–2288. https://doi.org/10.1007/s00467-018-4040-1.
35. Kim J., Field A., Schultz K.A.P., Hill D.A., Stewart D.R. The prevalence of DICER1 pathogenic variation in population databases. International Journal of Cancer, 2017. 141(10), 2030–2036. https://doi.org/10.1002/ijc.30907.
36. Klein S., Lee H., Ghahremani S., Kempert P., Ischander M., et al. Expanding the phenotype of mutations in DICER1: Mosaic missense mutations in the RNase IIIb domain of DICER1 cause GLOW syndrome. Journal of Medical Genetics, 2014. 51(5), 294–302. https://doi.org/10.1136/jmedgenet-2013-101943.
37. Kondo T., Ezzat S., Asa S.L. Pathogenetic mechanisms in thyroid follicular-cell neoplasia. Nat Rev Cancer, 2006. 6(4):292-306.
38. Landa I., Ganly I., Chan T.A. "Frequent somatic TERT promoter mutations in thyroid cancer: Higher prevalence in advanced forms of the disease." J Clin Endocrinol Metab, 2013. 98(9).
39. Lee Y.A. Predominant DICER1 pathogenic variants in pediatric follicular thyroid carcinomas. Thyroid, 2020. 30:1120–1131.
40. Lee J.C., Mazor T., Lao R., Wan E., Diallo A.B., Hill N.S., Solomon D.A. Recurrent KBTBD4 small in-frame insertions and absence of DROSHA deletion or DICER1 mutation differentiate pineal parenchymal tumor of intermediate differentiation (PPTID) from pineoblastoma. Acta Neuropathologica, 2019. 137, 851–854. https://doi.org/10.1007/s00401-019-01990-5.
41. Lu H., He Y., Lin L. "DICER1 gene mutations in thyroid carcinoma and their association with BRAF V600E mutation and microRNA expression profiles." Cancer Genet Cytogenet, 2010. 203(3):204-208.
42. Mao T.L., Yu J.S., Wu C.H. The role of RAS mutations in thyroid follicular neoplasia and the effect of RET/PTC and PAX8/PPARγ on RAS-induced growth suppression. Oncogene, 2014. 33(38):4873-4880.
43. Mazzaferri E.L. Management of low-risk differentiated thyroid cancer. Endocr Pract, 2007. 13(5):498-512.
44. Messinger Y.H., Stewart D.R., Priest J.R., Williams G.M., Harris A.K., Schultz K.A.P., Dehner L. P. Pleuropulmonary blastoma: A report on 350 central pathology-confirmed pleuropulmonary blastoma cases by the International Pleuropulmonary Blastoma Registry. Cancer, 2015. 121(2), 276–285. https://doi.org/10.1002/cncr.29032 .
45. Miao D., Margolis C.A., Vokes N.I., Liu, D., Taylor-Weiner A., Wankowicz S.M., Van Allen E.M. Genomic correlates of response to immune checkpoint blockade in microsatellite-stable solid tumors. Nature Genetics, 2018. 50(9), 1271–1281. https://doi.org/10.1038/s41588-018-0200-2.
46. Michael Solarski, Fabio Rotondo, William D. Foulkes, John R. Priest, Luis V. Syro, Henriett Butz, Michael D. Cusimano and Kalman Kovacs. DICER1 gene mutations in endocrine tumors. Endocrine-Related Cancer, 2018. https://doi.org/10.1530/ERC-17-0509.
47. Nikiforov Y.E., Nikiforova M.N. Molecular genetics and diagnosis of thyroid cancer. Nat Rev Endocrinol, 2011.7(10):569-580.
48. Nixon I.J., Whitcher M.M., Palmer F.L. The impact of distant metastases at presentation on prognosis in patients with differentiated thyroid carcinoma. Thyroid, 2012. 22(9):884-889.
49. Priya S., Patro P.K., Malyavantham K. DICER1 mutations and dysregulated microRNA pathways in thyroid cancer. Endocr Pathol, 2014. 25(3):232-243.
50. Pugh T.J., Yu W., Yang J., Field A.L., Ambrogio L., Carter S.L., Hill D.A. Exome sequencing of pleuropulmonary blastoma reveals frequent biallelic loss of TP53 and two hits in DICER1 resulting in retention of 5p-derived miRNA hairpin loop sequences. Oncogene, 2014. 33(45), 5295-5302. https://doi.org/10.1038/onc.2014.150.
51. Ragazzi M., Ciarrocchi A., Sancisi V. The role of miRNA in thyroid carcinogenesis: A meta-analysis. Endocr Relat Cancer, 2015. 22(5).
52. Rakheja D., Chen K.S., Liu Y., Shukla A. A., Schmid V., Chang T. C., Amatruda, J. F. Somatic mutations in DROSHA and DICER1 impair microRNA biogenesis through distinct mechanisms in Wilms tumours. Nature Communications, 2014. 5, 4802. https://doi.org/10.1038/ncomms5802.
53. Richards S., Aziz N., Bale S., Bick D., Das S., Gastier-Foster J., Rehm H.L. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics in Medicine, 2015.17(5), 405–423. https://doi.org/10.1038/gim.2015.30.
54. Sabbaghian N., Srivastava A., Hamel N., Plourde F., Gajtko-Metera M., Niedziela M., Foulkes W.D. Germ-line deletion in DICER1 revealed by a novel MLPA assay using synthetic oligonucleotides. European Journal of Human Genetics, 2014. 22(4), 564–567. https://doi.org/10.1038/ejhg.2013.215.
55. Scheithauer B.W., Horvath E., Abel T.W., Robital Y., Park S.H., Osamura R.Y., Kovacs K. Pituitary blastoma: A unique embryonal tumor. Pituitary, 2012. 15(3), 365–373. https://doi.org/10.1007/s11102-011-0328-x.
56. Schultz K.A., Stewart D.R., Bahubeshi A. DICER1 syndrome: Clarifying the diagnosis, clinical features, and management of a pleiotropic tumor predisposition syndrome." J Clin Oncol, 2014. 32(7):728-734.
57. Schultz K.A.P., Williams G.M., Kamihara J., et al. DICER1 and associated conditions: Identification of at-risk individuals and recommended surveillance strategies. Clinical Cancer Research, 2018. 24, 2251–2261. https://doi.org/10.1158/1078-0432.Ccr-17-3089.
58. Seki M., Yoshida K., Shiraishi Y., Shimamura T., Sato Y., Nishimura R., Takita J. Biallelic DICER1 mutations in sporadic pleuropulmonary blastoma. Cancer Research, 2014. 74(10), 2742–2749. https://doi.org/10.1158/0008-5472.can-13-2470.
59. Siegel R.L., Miller K.D., Jemal A. Cancer statistics. CA Cancer J Clin. 2020;70(1):7-30.
60. Soares P., Lima J., Preto A. Genetic alterations in poorly differentiated and undifferentiated thyroid carcinomas. Curr Genomics, 2011.12(8):609-617.
61. Stewart D.R., Best A. F., Williams G.M., Harney L.A., Carr A.G., Harris A.K., Schultz K.A.P. Neoplasm risk among individuals with a pathogenic germline variant in DICER1. Journal of Clinical Oncology, 2019. 37(8), 668–676. https://doi.org/10.1200/jco.2018.78.4678.
62. Sugitani I., Fujimoto Y., Yamada K. Prospectively enrolled, consecutive series of papillary thyroid carcinoma patients who underwent surgery for less than 2 cm tumors: Outcomes and prognostic factors in 1000 consecutive cases. J Clin Oncol, 2010. 28(17):2793-2798.
63. Takeshita D., Zenno S., Lee W.C., Nagata K., Saig K., Tanokura M. Homodimeric structure and double-stranded RNA cleavage activity of the C-terminal RNase III domain of human dicer. Journal of Molecular Biology, 2007. 374(1), 106–120. https://doi.org/10.1016/j.jmb.2007.08.069.
64. Van Engelen K., Villani A., Wasserman J.D., Aronoff L., Greer M.L.C., Tijerin Bueno M., Druker H. DICER1 syndrome: Approach to testing and management at a large pediatric tertiary care center. Pediatric Blood Cancer, 2018. 65(1), e26720. https://doi.org/10.1002/pbc.26720.
65. Vedanayagam J., Chatila W.K., Aksoy B.A., Majumdar S., Skanderup A.J., Demir E., Lai E.C. Cancer-associated mutations in DICER1 RNase IIIa and IIIb domains exert similar effects on miRNA biogenesis. Nature Communications, 2019. 10(1), 3682. https://doi.org/10.1038/s41467-019-11610-1.
66. Verburg F.A., Reiners C., Hanscheid H. Long-term survival in differentiated thyroid cancer: What has changed? Nat Rev Endocrinol, 2015.11(10):642-644.
67. Vogelstein B., Papadopoulos N., Velculescu V. E., Zhou S., Diaz L.A., Kinzler K.W. Cancer genome landscapes. Science, 2013. 339(6127), 1546–1558. https://doi.org/10.1126/science.1235122 .
68. Volante M., Landolfi S., Chiusa L., Palestini N., Motta M., Codegone A., Torchio B., Papotti M.G. Poorly differentiated carcinomas of the thyroid with trabecular, insular, and solid patterns: a clinicopathologic study of 183 patients. Cancer, 2004. 100:950–957. doi: 10.1002/cncr.20087.
69. Wang Y., Chen J., Yang W., Mo F., Senz J., Yap D., Huntsman D. G. The oncogenic roles of DICER1 RNase IIIb domain mutations in ovarian Sertoli-Leydig cell tumors. Neoplasia, 2015. 17(8), 650–660. https://doi.org/10.1016/j.neo.2015.08.003.
70. Wu M.K., de Kock L., Conwell L.S., Stewart C.J. R., King B.R., Choong C.S., Foulkes W.D. Functional characterization of multiple DICER1 mutations in an adolescent. Endocrine-related Cancer, 2016. 23(2), L1–L5. https://doi.org/10.1530/ERC-15-0460.
71. Wu M., Sabbaghian N., Xu B., Addidou-Kalucki S., Bernard C., Zou D., Foulkes, W. Biallelic DICER1 mutations occur in Wilms tumours. Journal of Pathology, 2013. 230(2), 154–164. https://doi.org/10.1002/path.4196.
72. Xing M. BRAF mutation in thyroid cancer. Endocr Relat Cancer, 2005. 12(2):245-262.
73. Zehir A., Benayed R., Shah R.H., Syed A., Middha S., Kim H.R., Berger M.F. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nature Medicine, 2017. 23(6), 703–713. https://doi.org/10.1038/nm.4333.
Количество просмотров: 175
Категория статей:
Обзор литературы
Библиографическая ссылка
Yerketayeva A.Kh., Mussazhanova Zh.B., Kozykenova Zh.Y., Pak L.A., Dushimova Z.D., Toktabayeva B.Zh., Zhazykbayeva L.K., Rakhmankulova A.M. The Impact of gene mutations in Thyroid Cancer: A review // Nauka i Zdravookhranenie [Science & Healthcare]. 2025. Vol.27 (1), pp. 157-166. doi 10.34689/SH.2025.27.1.019Похожие публикации:
ANALYSIS OF ANTIBIOTIC PRESCRIBING PRACTICES IN PRIMARY HEALTH CARE SETTINGS. PART I
ТЕНДЕНЦИИ ЗАБОЛЕВАЕМОСТИ ИНФЕКЦИОННОГО ЭНДОКАРДИТА ПОСЛЕ ОБНОВЛЕНИЯ МЕЖДУНАРОДНЫХ РУКОВОДСТВУЮЩИХ ПРИНЦИПОВ. ОБЗОР ЛИТЕРАТУРЫ
СРАВНЕНИЕ МЕТОДОВ МОДЕЛИРОВАНИЯ РЕЦЕССИИ ДЕСНЫ НА ЛАБОРАТОРНЫХ ЖИВОТНЫХ
THE ROLE OF ESSENTIAL AND TOXIC TRACE ELEMENTS IN THE DEVELOPMENT OF KIDNEY STONE DISEASE. LITERATURE REVIEW
CLINICAL AND PATHOGENETIC FEATURES OF INFLAMMATORY BOWEL DISEASES: A LITERATURE REVIEW Aigerim B. Japparkulova1, https://orcid.org/0009-0006-8841-2051