Online ISSN: 3007-0244,
Print ISSN:  2410-4280
DIAGNOSTIC CAPABILITIES OF DIFFUSE-WEIGHTED MAGNETIC RESONANCE IMAGING IMAGING IN BRAIN MENINGIOMAS
Relevance: The method of diffusion-weighted magnetic resonance imaging allows you to get information about the structural state of various tissues and organs. Currently, the method of diffuse-weighted images and the measured diffusion coefficient have not received widespread clinical use, with the exception of scientific works on the study of brain ischemia, demyelinating diseases, and injuries. The aim of the work is to compare the values of the measured diffusion coefficient of various forms of meningiomas and assess the possibilities of applying the methods of diffusion-weighted magnetic resonance imaging in the differential diagnosis of malignancy of brain meningiomas. Material and methods: Research method - continuous sample. Magnetic resonance tomograms were analyzed using diffusion imaging programs and calculating the measured diffusion coefficient of 53 patients (32 of them women, 21 men) who were examined at the Semei Consultative and Diagnostic Center and the Center for Nuclear Medicine and Oncology. Semey, in the Center for Oncology and Surgery Ust-Kamenogorsk, for the period 2008 - 2014. Statistical data processing was performed using Microsoft Excel 2010. All measurements were checked for normality using the Kolmogorov – Smirnov test. The data obtained are evaluated using descriptive statistics methods. A comparative analysis of the measured diffusion coefficient values was performed using the Mann-Whitney U-test. Results. When analyzing the average values of the measured diffusion coefficient, it was established for all types of meningiomas that the average value of the measured diffusion coefficient was determined: for meningiomas, MI was 1399.5 ± 154.6 mm2/s; for meningiomas MII - 1136.2 ± 150 mm2/s; for meningiomas MIII - 706 ± 73.4 mm2/s. No significant differences were found when comparing the measured diffusion coefficient of meningiomas M1 and M2 (p = 0.723). But when comparing the measured diffusion coefficient of meningiomas M1 and M3, as well as M2 and M3, significant differences were found (M1 / M3 - p = 0.007, M2 / M3 - p = 0.0010). Conclusions: The technique of magnetic resonance imaging using diffusion imaging programs and calculating the measured diffusion coefficient can be used as an additional non-invasive method for the differential diagnosis of intracranial meningiomas when conducting magnetic resonance studies.
Alexandr V. Rakhimbekov 1, https://orcid.org/0000-0003-3894-2397 Tasbolat A. Adylkhanov2, http//orcid.org/0000-0002-9092-5060 Madina R. Madiyeva 1, https://orcid.org/0000-0001-6431-9713 Anargul G. Kuanysheva 1, http://orcid.org/0000-0002-6194-1029 Tatyana I. Belikhina 3, Daniyar T. Raissov 1, http://orcid.org/0000-0002-3872-1263 Madina N. Baizakova 1, https://orcid.org/0000-0002-2246-1866 Sara А. Dyussyupova1, http://orcid.org/0000-0002-2599-5089 1 Department of Radiology and Nuclear Medicine, 2 Department of Clinical and Radiation Oncology, «Semey Medical University» NJSC; 3 Semey Regional Oncology center, Semey city, Republic of Kazakhstan;
1 Бывальцев В.А., Ступак В.В., Степанов И.А., Кичигин А.И. Применение коэффициента диффузии в предоперационной оценке пролиферативного потенциала опухолей позвоночного канала // Хирургия позвоночника. 2017. Т. 14. № 3. С. 93–99. 2. Никифоров Б.М., Мацко Д.Е. Опухоли головного мозга. Краткое руководство. – Санкт-Петербург, 2003. 320 с. 3. Корниенко В.Н., Пронин И.Н. Диагностическая нейрорадиология. М. 2007, 1327c. 4. Пронин И.Н., Фадеева Л.М., Родионов П.В. и др. Диффузионно­взвешенные изображения в исследова-нии опухолей головного мозга и перитуморального отека // Вопросы нейрохирургии. 2000; 3: 14-17. 5. Тиглиев Г.С., Олюшин В.Е., Кондратьев А.Н. Внутричерепные менингиомы. Санкт-Петербург: РНХИ им. проф. А.Л. Поленова, 2001. – 560 с. 6. Baldi I., Engelhardt J., Bonnet C. et al. Epidemiology of meningiomas // Neurochirurgie. 2014. Sept. 20. Р. 36-40 7. Buetow М., Burton Р., Smirniotopoulos J. Typical, atypical, аnd misleading features in meningioma // Aadio Graphics. 1991.V. 11. Р. 1087-1100. 8. Calvocoressi L., Claus E.B. Epidemiology and Natural History of Meningiomas // Meningiomas: a comprehensive text. Philadelphia, 2010. P. 61–77. 9. Claus E.B., Calvocoressi M., Bondy L. et al. Family and personal medical history and risk of meningioma // Journal of Neurosurgery, 2011. Vol. 115. – P. 1072–1077. 10. Desprechins В., Stadnik Т., Koerts G. et al. Use of Diffusion-Weighted MR Imaging in Differential Diagnosis Between Intracerebral Necrotic Tumors and Cerebral Abscesses // AJNR Am J Neuroradiol, 1999. 20:1252-1257. 11. Glasier С., Husaiп М., Chadduck W. Meningiomas iп children: МА апd histopathologic findings // AJNR Am J Neuroradiol. 1993. V. 13. Р. 237-241. 12. Hakyemez B., Yildirim N., Gokalp G., Erdogan C., Parlak M. The contribution of diffusion-weighted MR imaging to distinguishing typical from atypical meningiomas. Neuroradiology. 2006; 48 (8): 513–520. 13. Ikeda M., Motoori K., Hanazawa T., Nagai Y., Yamamoto S., Ueda T., Funatsu H., Ito H. Warthin tumor of the parotid gland: diagnostic value of MR imaging with histopathologic correlation // AJNR Am J Neuroradiol. 2004; 25 (7): 1256–1262. 14. Karaman A., Durur-Subasi I., Alper F., Araz O., Subasi M., Demirci E., Karabulut N. Correlation of diffusion MRI with the Ki67 index in nonsmall cell lung cancer // Radiol Oncol. 2015; 49 (3): 250–255. doi: 10.1515/raon-2015-0032. 15. Kepes J. Meningiomas. Biology, pathology аnd differential diagnosis. N.Y.: Masson, 1982. Р. 172. 16. Mehdorn H.M. Intracranial meningiomas: a 30-year experience and literature review // Advances and Technical Standards in Neurosurgery. 2016. Vol. 43. P. 139–184. 17. Meningiomas: diagnosis, treatment and outcome / ed. J. H. Lee. – London : Springer Verlag. 2008. 614 p. 18. Nagar V.A., Ye J.R., Ng W.H., Chan Y.H., Hui F., Lee C.K., Lim C.C. Diffusion-weighted MR imaging: diagnosing atypical or malignant meningiomas and detecting tumor dedifferentiation // AJNR Am J Neuroradiol. 2008; 29 (6): 1147–1152. doi: 10.3174/ajnr.A0996. 19. Nusbaum A., Lu D., Tang С. Quantitative diffusion measurements in focal multiple sclerosis lesions: correlations with appearance on TI-weighted MR images // AJR Am J Roentgenol. 2000;175:821-825. 20. Ostrom Q.T., Gittleman H., Farah P. et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in United States, 2006–2010 // Neuro Oncol. 2013 Nov;15 Suppl 2:ii1-56. doi: 10.1093/neuonc/not151. 21. Ostrom Q.T., Gittleman H., Liao P. et al. CBT RUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007–2011 // Neuro-Oncology. 2014. Vol. 16, suppl. 4. P. iv1–63. 22. Pavlisa G., Rados M., Pazanin L., Padovan R.S., Ozretic D., Pavlisa G. Characteristics of typical and atypical meningiomas on ADC maps with respect to schwannomas. // Clin Imaging. 2008; 32 (1): 22–27. 23. Sanverdi S.E., Ozgen B., Oguz K.K., Mut M., Dolgun A., Soylemezoglu F., Cila A. Is diffusion-weighted imaging useful in grading and differentiating histopathological subtypes of meningiomas? // Eur J Radiol. 2012; 81 (9): 2389–2395. doi: 10.1016/j.ejrad.2011.06.03. 24. Schoenberg G.S., Christine B.W., Whisnant J.P. The descriptive epidemiology of primary intracranial neoplasms: the connecticut experience // American Journal of Epidemiology. 1976. Vol. 104. P. 499–510. 25. Subhawong T.K., Durand D.J., Thawait G.K., Jacobs M.A., Fayad L.M. Characterization of soft tissue masses: can quantitative diffusion weighted imaging reliably distinguish cysts from solid masses? // Skeletal Radiol. 2013; 42 (11): 1583–1592. doi: 10.1007/s00256-013-1703-7. 26. Surov A., Ryl I., Bartel-Friedrich S., Wienke A., Kösling S. Diffusion weighted imaging of nasopharyngeal adenoid hypertrophy // Acta Radiol. 2015; 56 (5): 587–591. doi: 10.1177/0284185114534107. 27. Tang Y., Dundamadappa S.K., Thangasamy S., Flood T., Moser R., Smith T., Cauley T., Takhtani D. Correlation of apparent diffusion coefficient with Ki67 proliferation index in grading meningioma // Am J Roentgenol. 2014; 202 (6): 1303–1308. doi: 10.2214/AJR.13.11637. References: 1. Byval'tsev V.A., Stupak V.V., Stepanov I.A., Kichigin A.I. Primenenie koeffitsienta diffuzii v predoperatsionnoi otsenke proliferativnogo potentsiala opukholei pozvonochnogo kanala [The use of diffusion coefficient in the preoperative evaluation of the proliferative potential of spinal canal tumors]. Khirurgiya pozvonochnika [Spinal surgery]. 2017. V. 14. № 3. pp. 93–99. [in Russian] 2. Nikiforov B.M., Matsko D.E. Opukholi golovnogo mozga. [Brain Tumors]. Sankt-Peterburg, 2003. – 320 p. [in Russian] 3. Kornienko V.N., Pronin I.N. Diagnosticheskaya neiroradiologiya [Diagnostic neuroradiology]. M. 2007, P.1327. [in Russian] 4. Pronin I.N., Fadeeva L.M., Rodionov P.V. i dr. Diffuzionno­vzveshennye izobrazheniya v issledovanii opukholei golovnogo mozga i peritumoral'nogo oteka [Diffusion-weighted images in the study of brain tumors and peritumoral edema]. Voprosy neirokhirurgii [Neurosurgery Questions], 2000; 3: pp. 14-17. [in Russian] 5. Tigliev G.S., Olyushin V.Ye., Kondrat'ev A.N. Vnutricherepnye meningiomy [Intracranial meningiomas]. Sankt-Peterburg: RNHI im. prof. A.L. Polenova, 2001. 560 p. [in Russian] 6. Baldi I., Engelhardt J., Bonnet C. et al. Epidemiology of meningiomas. Neurosurgery. 2014. Sept. 20. 7. Buetow М., Burton Р., Smirniotopoulos J. Typical, atypical, аnd misleading features in meningioma. Aadio Graphics. 1991. V. 11. Р. 1087-1100. 8. Calvocoressi L., Claus E.B. Epidemiology and Natural History of Meningiomas. Meningiomas: a comprehensive text. Philadelphia, 2010. P. 61–77. 9. Claus E.B., Calvocoressi M., Bondy L. et al. Family and personal medical history and risk of meningioma. Journal of Neurosurgery, 2011. Vol. 115. – P. 1072–1077. 10. Desprechins В., Stadnik Т., Koerts G. et al. Use of Diffusion-Weighted MR Imaging in Differential Diagnosis Between Intracerebral Necrotic Tumors and Cerebral Abscesses. AJNR Am J Neuroradiol, 1999. 20:1252-1257. 11. Glasier С., Husaiп М., Chadduck W. Meningiomas iп children: МА апd histopathologic findings. AJNR Am J Neuroradiol. 1993. V. 13. Р. 237-241. 12. Hakyemez B., Yildirim N., Gokalp G., Erdogan C., Parlak M. The contribution of diffusion-weighted MR imaging to distinguishing typical from atypical meningiomas. Neuroradiology. 2006; 48 (8): 513–520. 13. Ikeda M., Motoori K., Hanazawa T., Nagai Y., Yamamoto S., Ueda T., Funatsu H., Ito H. Warthin tumor of the parotid gland: diagnostic value of MR imaging with histopathologic correlation. AJNR Am J Neuroradiol. 2004; 25 (7): 1256–1262. 14. Karaman A., Durur-Subasi I., Alper F., Araz O., Subasi M., Demirci E., Karabulut N. Correlation of diffusion MRI with the Ki67 index in nonsmall cell lung cancer. Radiol Oncol. 2015; 49 (3): 250–255. doi: 10.1515/raon-2015-0032. 15. Kepes J. Meningiomas. Biology, pathology аnd differential diagnosis. N.Y.: Masson, 1982. Р. 172. 16. Mehdorn H.M. Intracranial meningiomas: a 30-year experience and literature review. Advances and Technical Standards in Neurosurgery. 2016. Vol. 43. P. 139–184. 17. Meningiomas: diagnosis, treatment and outcome / ed. J. H. Lee. – London : Springer Verlag. 2008. 614 p. 18. Nagar V.A., Ye J.R., Ng W.H., Chan Y.H., Hui F., Lee C.K., Lim C.C. Diffusion-weighted MR imaging: diagnosing atypical or malignant meningiomas and detecting tumor dedifferentiation. AJNR Am J Neuroradiol. 2008; 29 (6): 1147–1152. doi: 10.3174/ajnr.A0996. 19. Nusbaum A., Lu D., Tang С. Quantitative diffusion measurements in focal multiple sclerosis lesions: correlations with appearance on TI-weighted MR images. AJR Am J Roentgenol. 2000;175:821-825. 20. Ostrom Q.T., Gittleman H., Farah P. et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in United States, 2006–2010. Neuro Oncol. 2013 Nov;15 Suppl 2:ii1-56. doi: 10.1093/neuonc/not151. 21. Ostrom Q.T., Gittleman H., Liao P. et al. CBT RUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro-Oncology. 2014. Vol. 16, suppl. 4. P. iv1–63. 22. Pavlisa G., Rados M., Pazanin L., Padovan R.S., Ozretic D., Pavlisa G. Characteristics of typical and atypical meningiomas on ADC maps with respect to schwannomas. Clin Imaging. 2008; 32 (1): 22–27. 23. Sanverdi S.E., Ozgen B., Oguz K.K., Mut M., Dolgun A., Soylemezoglu F., Cila A. Is diffusion-weighted imaging useful in grading and differentiating histopathological subtypes of meningiomas? Eur J Radiol. 2012; 81 (9): 2389–2395. doi: 10.1016/j.ejrad.2011.06.03. 24. Schoenberg G.S., Christine B.W., Whisnant J.P. The descriptive epidemiology of primary intracranial neoplasms: the connecticut experience. American Journal of Epidemiology. 1976. Vol. 104. P. 499–510. 25. Subhawong T.K., Durand D.J., Thawait G.K., Jacobs M.A., Fayad L.M. Characterization of soft tissue masses: can quantitative diffusion weighted imaging reliably distinguish cysts from solid masses? Skeletal Radiol. 2013; 42 (11): 1583–1592. doi: 10.1007/s00256-013-1703-7. 26. Surov A., Ryl I., Bartel-Friedrich S., Wienke A., Kösling S. Diffusion weighted imaging of nasopharyngeal adenoid hypertrophy. Acta Radiol. 2015; 56 (5): 587–591. doi: 10.1177/0284185114534107. 27. Tang Y., Dundamadappa S.K., Thangasamy S., Flood T., Moser R., Smith T., Cauley T., Takhtani D. Correlation of apparent diffusion coefficient with Ki67 proliferation index in grading meningioma. Am J Roentgenol. 2014; 202 (6): 1303–1308. doi: 10.2214/AJR.13.11637.
Количество просмотров: 599

Ключевые слова:


Библиографическая ссылка

Rakhimbekov A.V., Adylkhanov T.A., Madiyeva M.R., Kuanysheva A.G., Belikhina T.I., Raissov D.T., Baizakova M.N., Dyussyupova S.А. Diagnostic capabilities of diffuse-weighted magnetic resonance imaging imaging in brain meningiomas. Nauka i Zdravookhranenie [Science & Healthcare]. 2019, (Vol.21) 3, pp. 84-91.

Авторизируйтесь для отправки комментариев