ASSOCIATION BETWEEN COVID-19, STENT THROMBOSIS, AND RESTENOSIS
Introduction. COVID-19 is not just a respiratory infection, but a systemic disease that harms the entire body, including the heart and blood vessels. The cause of occlusion, in most cases, is not atherosclerosis, but fibrosis or thrombosis in the area of coronary artery stenting. Early detection of restenosis and its prevention are important tasks for the healthcare system which causes great interest in this issue. The aim is to study the problems of restenosis and thrombosis of the coronary arteries after coronavirus infection according to the literature data. Materials and methods. For the search and analysis of scientific data, we used databases and web resources: MEDLINE, Pubmed, Google Scholar, Cyberleninka, and eLIBRARY. For the literature review, we used sources published from 2019 to 2022. Scientific articles were used that correspond to the topic and the basic context of the study. Results. COVID-19 contributed to a change in the course of myocardial infarction in patients with previous myocardial revascularization. The frequency of stent thrombosis has a positive correlation with the severity of the coronavirus infection. Previous myocardial revascularization procedures significantly increase the risk of death in patients with coronavirus infection. Conclusion. SARS-CoV-2 infection activates inflammatory mechanisms that potentially create a prothrombotic environment and increase the risk of local microthromboembolism and all types of stent thrombosis. Patients after percutaneous coronary intervention with active COVID-19 infection and symptoms of the acute coronary syndrome are more likely to have stent thrombosis.
Gulnara B. Batenova1, https://orcid.org/0000-0003-3198-1860 Evgeny I. Dedov1, https://orcid.org/0000-0002-9118-3708 Igor G. Nikitin1, https://orcid.org/0000-0003-1699-0881 Olga A. Ettinger1, https://orcid.org/0000-0002-1237-3731 Diana G. Ygiyeva2, https://orcid.org/0000-0001-8391-8842 Sabit M. Zhussupov3, https://orcid.org/0000-0002-0551-126Х Assylzhan M. Messova2, https://orcid.org/0000-0001-5373-0523 Zhanar M. Zhumanbayeva4, https://orcid.org/0000-0001-8941-862Х Aizhan Т. Shakhanova4, http://orcid.org/0000-0001-8214-8575 Altynay M. Dosbayeva4, https://orcid.org/0000-0002-0554-2680 Maksim R. Pivin2, https://orcid.org/0000-0001-7206-8029 Adilzhan G. Zhumagaliyev2, https://orcid.org/0000-0002-2364-375X Lyudmila M. Pivina2, https://orcid.org/0000-0002-8035-4866 1 Department of Hospital Therapy No2, MF, Pirogov Russian National Research Medical University, Moscow, Russian Federation; 2 Department of Emergency Medicine, NCJSC «Semey Medical University», Semey, Republic of Kazakhstan; 3 Pavlodar branch of NCJSC «Semey Medical University», Pavlodar city, Republic of Kazakhstan; 4 NCJSC «Semey Medical University», Semey, Republic of Kazakhstan;
1. Алимов Д.А., Жалалов Б.З., Ганиев У.Ш. Рестеноз стента с точки зрения эндотелиальной дисфункции // Вестник экстренной медицины. 2017. №3. С. 109-112. 2. Бакулева Т.А., Липченко А.А., Бакулев А.В. АМВ. Клинико- функциональные особенности пациентов с прогрессированием коронарного атеросклероза и клиникой возвратной ишемии миокарда, перенесших ранее чрескожное коронарное вмешательство по поводу острого коронарного синдрома // Международный Журнал интервенционной кардиоангиологии. 2011. № 24. С. 16–17. 3. Козлов С.Г., Габбасов З.А., Бязрова С.В. Избыточное образование конечных продуктов гликирования как возможная причина повышенного риска возникновения рестеноза после стентирования коронарных артерий у больных сахарным диабетом // Атеросклероз и дислипидемии. 2015. №3. С. 5-13. 4. Самко А.Н., Меркулов Е.В., Власов В.М., Филатов Д.Н. Рестеноз: причины и механизмы развития при различных видах эндоваскулярного лечения // Атеросклероз и дислипидемии. 2014. №1. С. 5-8. 5. Ackermann M., Verleden S.E., Kuehnel M., Haverich A., Welte T., Laenger F., et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. // N Engl J Med Vol. 383. P. 120–128. 6. Aladağ N., Atabey R.D. The role of concomitant cardiovascular diseases and cardiac biomarkers for predicting mortality in critical COVID-19 patients // Acta Cardiol. Vol. 76. N2. P. 132-139. 7. Andrew G. Harrison, Tao Lin, Penghua Wang. Mechanisms of SARS-CoV-2 Transmission and Pathogenesis // Trends in Immunology. 2020. Vol. 41. N12. P. 1100–1115. 8. Armstrong P.W., Gershlick A.H., Goldstein P., Wilcox R., Danays T., Lambert Y., et al. Fibrinolysis or primary PCI in ST-segment elevation myocardial infarction // N Engl J Med. 2013. Vol. 368. P. 1379–87. 9. Baldi E., Sechi G.M., Mare C., Canevari F., Brancaglione A., Primi R., et al. Outof-hospital cardiac arrest during the Covid-19 outbreak in Italy // N Engl J Med. 2020. Vol. 383. P. 496–8. 10. Batenova G., Dedov E., Pivin M., Nikitin I., Ettinger O., Smail Y., Ygiyeva D., Pivina L. Coronary Heart Disease and Coronavirus Disease 2019: Pathogenesis, Epidemiology, Association with Myocardial Revascularization // Open Access Maced J Med Sci Vol. 10. P. 319-325. 11. Bikdeli B., Madhavan M.V., Jimenez D., Chuich T., Dreyfus I., Driggin E., et al. COVID-19 and thrombotic or thromboembolic disease: implications for prevention, antithrombotic therapy, and follow-up: JACC state-of-the-art review // J Am Coll Cardiol. 2020. Vol. 75. P. 2950–73. 12. Boyle A.J., Di Gangi S., Hamid U.I., Mottram L.J., McNamee L., White G., et al. Aspirin therapy in patients with acute respiratory distress syndrome (ARDS) is associated with reduced intensive care unit mortality: a prospective analysis // Crit Care. 2015. Vol. 19. P. 109. 13. Bubnova M.G., Aronov D.M. Myocardial revascularization for stable coronary heart disease: indications, rehabilitation, and drug therapy according to the current recommendations // Cardiosomatika. 2011. № 2. P. 35–42. 14. Canfield J., Totary-Jain H. 40 Years of Percutaneous Coronary Intervention: History and Future Directions // Journal of personalized medicine. 2018. Vol. 8. N4. 15. Chinese Society of Cardiology of Chinese Medical Association, Editorial Board of Chinese Journal of Cardiology. 2019 16. Choudry F.A., Hamshere S.M., Rathod K.S., Akhtar M.M., Archbold R.A., Guttmann O.P. et al. High thrombus burden in patients with COVID19 presenting with ST-segment elevation myocardial infarction // J Am Coll Cardiol. 2020. Vol. 76. P. 1168–76. 17. Claessen B.E., Henriques J.P.S, Jaffer F.A., Mehran R., Piek J.J., Dangas G.D. Stent Thrombosis: a clinical perspective // JACC Cardiovasc Interv. Vol. 7. N10. P. 1081–1092. 18. Daviet F., Guervilly C., Baldesi O., Bernard-Guervilly F., Pilarczyk E., Genin A. et al. Heparin-induced thrombocytopenia in severe COVID-19 // Circulation. 2020. Vol. 142. P. 1875–7. 19. Falcone M., Russo A., Cangemi R., Farcomeni A., Calvieri C., Barillà F., et al. Lower mortality rate in elderly patients with communityonset pneumonia on treatment with aspirin // J Am Heart Assoc. 2015. Vol. 4. e001595. 20. Farsky P.S., Hirata M.H., Arnoni R.T. et. al. Persistent Inflammatory Activity in Blood Cells and Artery Tissue from Patients with Previous Bare Metal Stent // Arquivos brasileiros de cardiologia. 2018. Vol. 111. N2. P. 134-141. 21. Giannini F., Toselli M., Palmisano A., Cereda A., Vignale D. et.al. Coronary and total thoracic calcium scores predict mortality and provides pathophysiologic insights in COVID-19 patients // J Cardiovasc Comput Tomogr. Vol. 15. N5. P. 421-430. 22. Giustino G., Croft L.B, Stefanini G.G., Bragato R., et. al. Characterization of Myocardial Injury in Patients With COVID-19 // J Am Coll Cardiol. Vol. 76. N18. P. 2043-2055. 23. Gori T., Polimeni A., Indolfi C., Räber L., Adriaenssens T., Münzel T. Predictors of stent thrombosis and their implications for clinical practice // Nat Rev Cardiol. 2019. Vol. 16. N4. P. 243-56. 24. Goyal P., Choi J.J., Pinheiro L.C., Schenck E.J., Chen R. et al. Clinical characteristics of Covid-19 in New York city // N Engl J Med. 2020. Vol. 382. P. 2372–4. 25. Hoffmann M., Kleine-Weber H., Schroeder S., Krüger N., Herrler T., Erichsen S., et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor // Cell. 2020. Vol. 181. P. 271– 80. 26. Ibanez B., James S., Agewall S., Antunes M.J., Bucciarelli-Ducci C., Bueno H., et al. ESC guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: the task force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European society of cardiology (ESC) // Eur Heart J. 2018. Vol. 39. P. 119–77. 27. Indolfi C., Pavia M., Angelillo I.F. Drug-eluting stents versus bare metal stents in percutaneous coronary interventions (a meta-analysis) // Am J Cardiol. Vol. 95. N10. P. 1146–1152. 28. Lang Z.W., Zhang L.J., Zhang S.J., Meng X., Li J.Q., Song C.Z., et al. A clinicopathological study of three cases of severe acute respiratory syndrome (SARS) // Pathology. 2003. Vol. 35. P. 526–31. 29. Lefrançais E., Ortiz-Muñoz G., Caudrillier A., Mallavia B., Liu F., Sayah D.M., et al. The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors // Nature. 2017. Vol. 544. P. 105–9. 30. Levi M., Thachil J., Iba T., Levy J.H. Coagulation abnormalities and thrombosis in patients with COVID-19. // Lancet Haematol 2020; 6: e438–e440. 31. Li F., Li W., Farzan M., Harrison S.C. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor // Science. 2005. Vol. 309. P. 1864–8. 32. Liu Q., Wang R.S., Qu G.Q., Wang Y.Y., Liu P., Zhu Y.Z., et al. Gross examination report of a COVID-19 death autopsy. Fa Yi Xue Za Zhi. 2020. Vol. 36. P. 21– 3. 33. Lu R., Zhao X., Li J., Niu P., Yang B., Wu H., et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding // Lancet. 2020. Vol. 395. P.565–74. 34. Manne B.K., Denorme F., Middleton E.A., Portier I., Rowley J.W., Stubben C.J., et al. Platelet gene expression and function in COVID-19 patients // Blood. 2020. Vol. 136. P. 1317–29. 35. Matsushita K., Hess S., Marchandot B., Sato C., Truong D.P., Kim N.T., et al. Clinical features of patients with acute coronary syndrome during the COVID-19 pandemic // J Thromb Thrombolysis Vol. 52. N1. P. 95-104. 36. Nijjer S.S., Petraco R., Sen S. Optimal management of acute coronary syndromes in the era of COVID-19 // Heart. 2020. Vol. 106. 1609–16. 37. Nishiga M., Wang D.W., Han Y., Lewis D.B., Wu J.C. COVID-19 and cardiovascular disease: from basic mechanisms to clinical perspectives// Nat Rev Cardiol. 2020. Vol. 17. P. 543–58. 38. Omeh D.J., Shlofmitz E. Restenosis. StatPearls Publishing. FL. 2020. 20 p. URL: https://www.ncbi.nlm.nih.gov/books/NBK545139. 39. Ong A.T., Hoye A., Aoki J., van Mieghem C.A., Rodriguez Granillo G.A., Sonnenschein K. et al. Thirty-day incidence and six-month clinical outcome of thrombotic stent occlusion after bare-metal, sirolimus, or paclitaxel stent implantation // J Am Coll Cardiol. Vol. 45. N6. P. 947–953. 40. Pellegrini D., Fiocca L., Pescetelli I., Canova P., Vassileva A., Faggi L., Senni M., Guagliumi G. Effect of Respiratory Impairment on the Outcomes of Primary Percutaneous Coronary Intervention in Patients With ST-Segment Elevation Myocardial Infarction and Coronavirus Disease-2019 (COVID-19) // Circ J. Vol. 85. N10. P. 1701-1707. 41. Pleva L., Kukla P., Hlinomaz O. Treatment of coronary in-stent restenosis: a systematic review // J Geriatr Cardiol. Vol. 15. N2. P. 173–184. 42. Reejhsinghani R., Lotfi A.S. Prevention of stent thrombosis: challenges and solutions // Vasc Health Risk Manag. 2015. N11. P. 93–106. 43. Skorupski W.J., Grygier M., Lesiak M., Kałużna-Oleksy M. Coronary Stent Thrombosis in COVID-19 Patients: A Systematic Review of Cases Reported Worldwide // Viruses. Vol. 14 N2. P. 260. 44. Sun J., Yu H., Liu H. et. al. Correlation of preoperative circulating inflammatory cytokines with restenosis and rapid angiographic stenotic progression risk in coronary artery disease patients underwent percutaneous coronary intervention with drug-eluting stents // Journal of clinical laboratory analysis. 2020. Vol. 34. N3. 45. Tahir H., Bona-Casas C., Hoekstra A.G. Modelling the effect of a functional endothelium on the development of in-stent restenosis // PLoS One. 2013. Vol. 8. N6. e66138. 46. Wang D., Hu B., Hu C., Zhu F., Liu X., Zhang J. et al. Clinical Characteristics of 138 Hospitalized Patients With (2019). Novel Coronavirus-infected pneumonia in Wuhan, China // JAMA. 2020. P. 1061–9. 47. Windecker S., Kolh P., Alfonso F., Collet J.P., Cremer J., Falk V. et al. 2014 ESC/EACTS Guidelines on myocardial revascularization // Eur Heart J. Vol. 35. N 37. P. 2541–2619. 48. World Health Organization. Cardiovascular diseases (CVDs). Available from: http://www.who.int/cardiovascular_diseases/en/. 49. Xu Z., Shi L., Wang Y., Zhang J., Huang L., Zhang C. et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome // Lancet Respir Med. 2020. Vol. 8. P. 420–2. 50. Zhou X., Li Y., Yang Q. Antiplatelet therapy after percutaneous coronary intervention in patients with COVID-19: implications from clinical features to pathologic findings // Circulation. 2020. Vol. 141. P. 1736–8. References [1-4]: 1. Alimov D.A., Zhalalov B.Z., Ganiev U.Sh. Restenoz stenta s tochki zreniya endotelial'noi disfunktsii [Stent restenosis in terms of endothelial dysfunction]. Vestnik ekstrennoi meditsiny [Bulletin of emergency medicine]. 2017. №3. pp. 109-112. [in Russian] 2. Bakuleva T.A., Lipchenko A.A., Bakulev A.V. Kliniko-funktsional'nye osobennosti patsientov s progressirovaniem koronarnogo ateroskleroza i klinikoi vozvratnoi ishemii miokarda, perenesshikh ranee chreskozhnoe koronarnoe vmeshatel'stvo po povodu ostrogo koronarnogo sindroma [Clinical and functional features of patients with progression of coronary atherosclerosis and a clinical picture of recurrent myocardial ischemia who had previously undergone percutaneous coronary intervention for acute coronary syndrome]. Mezhdunarodnyi Zhurnal interventsionnoi kardioangiologii [International Journal of Interventional Cardioangiology]. 2011. № 24. pp. 16–17. [in Russian] 3. Kozlov S.G., Gabbasov Z.A., Bjazrova S.V. Izbytochnoe obrazovanie konechnykh produktov glikirovaniya kak vozmozhnaya prichina povyshennogo riska vozniknoveniya restenoza posle stentirovaniya koronarnykh arterii u bol'nykh sakharnym diabetom [Excess formation of advanced glycation end products as a possible cause of increased risk of restenosis after coronary artery stenting in patients with diabetes mellitus]. Ateroskleroz i dislipidemii [Atherosclerosis and dyslipidemia]. 2015. №3. pp. 5-13. 4. Samko A.N., Merkulov E.V., Vlasov V.M., Filatov D.N. Restenoz: prichiny i mekhanizmy razvitiya pri razlichnykh vidakh endovaskulyarnogo lecheniya [Restenosis: causes and mechanisms of development in various types of endovascular treatment]. Ateroskleroz i dislipidemi [Atherosclerosis and dyslipidemia]. 2014. №1. pp. 5-8. [in Russian]
Количество просмотров: 269

Ключевые слова:

Категория статей: Актуальная тема COVID-19

Библиографическая ссылка

Batenova G.B., Dedov E.I., Nikitin I.G., Ettinger O.A., Ygiyeva D.G., Zhussupov S.M., Messova A.M., Zhumanbayeva Zh.M., Shakhanova A.Т., Dosbayeva A.M., Pivin M.R., Zhumagaliyev A.G., Pivina L.M. Association between COVID-19, stent thrombosis, and restenosis // Nauka i Zdravookhranenie [Science & Healthcare]. 2022, (Vol.24) 5, pp. 12-19. doi 10.34689/SH.2022.24.5.002

Авторизируйтесь для отправки комментариев