Online ISSN: 3007-0244,
Print ISSN:  2410-4280
POPULATION FEATURES OF THE GENETIC MARKER’S DISTRIBUTION OF THE HEART FAILURE EFFECTIVENESS THERAPY WITH SGLT2 INHIBITORS IN THE KAZAKH POPULATION
Various approaches to cardiovascular diseases and heart failure treatment are being considered and investigated. At present, researchers note the cardio protective effect of taking a new group of drugs ‒ SGLT2 inhibitors. The purpose of the study: to conduct a comparative analysis of the population frequencies of alleles and genotypes of polymorphic variants of genes associated with the pharmacokinetics of dapaglifosine GWAS – SLC5A2 (rs9934336, rs3116150); PNPLA3 (rs738409); WFS1 (rs10010131); UGT2B4 (rs1080755), in an ethnically homogeneous population of Kazakhs with previously studied world populations. A genomic database of 1800 healthy individuals of Kazakh nationality were used to analyse the population frequencies of alleles and genotypes of polymorphic variants of genes associated with the pharmacokinetics of dapagliflozin. The results demonstrated that in the Kazakh population, the distribution of genotypes of the investigated gene polymorphisms associated with the effectiveness of heart failure therapy with SGLT2 inhibitors is in accordance with the Hardy-Weinberg equilibrium (p>0.05). High population frequencies of unfavourable alleles of gene polymorphisms were found ‒ PNPLA3 rs738409, which suggests their main genetic contribution to the prognosis of the effectiveness of therapy with SGLT2 inhibitors in the treatment of heart failure in the Kazakh population. Based on the results of the GWAS analysis and meta-studies, 5 pan-ethnic polymorphisms were selected for further replicative genotyping of patients with heart failure treated with dapagliflozin to predict the efficacy and safety of therapy with SGLT2 inhibitors in the Kazakh population.
Gulnara Svyatova1, http://orcid.org/0000-0001-5092-3143 Galina Berezina1, http://orcid.org/0000-0002-5442-4461 Marat Pashimov2, https://orcid.org/0009-0004-9316-9549 Aisulu Mussagaliyeva2, https://orcid.org/0000-0001-6338-8338 Alexandra Murtazaliyeva1, http://orcid.org/0000-0001-9156-5944 Laura Danyarova2, https://orcid.org/0000-0003-0143-3847 Amina Rakisheva2, https://orcid.org/0000-0001-9842-962X Madina Nurzhanova2,3, https://orcid.org/0000-0003-2561-8707 1 Republican Medical Genetic Consultation, Scientific Center of Obstetrics, Gynecology and Perinatology, Almaty, Republic of Kazakhstan; 2 Scientific-Research Institute of Cardiology and Internal Diseases, Almaty, Republic of Kazakhstan; 3 KMU Higher School of Public Health, Almaty, Republic of Kazakhstan.
1. A Study to Investigate Effects of Omega-3 Carboxylic Acids and Dapagliflozin on Liver Fat Content in Diabetic Patients. 2021. https://clinicaltrials.gov/ct2/show/NCT02279407. 2. Berndt S.I. Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture // Naturegenetics, 2013. 45, 501‐512. 3. Bonaca M.P., Kato E., Kumbhani D.J. Eagle K.A. Dapagliflozin Effect on Cardiovascular Events–Thrombolysis in Myocardial Infarction 58 - DECLARE–TIMI 58. 2021. https://www.acc.org/latest-in-cardiology/clinical-trials/2018/11/08/23/09/declare-timi-58 (Accepted: 23.04.2023) 4. Byrne C.D., Targher G. Non-alcoholic fatty liver disease-related risk of cardiovascular disease and other cardiac complications // Diabetes, Obesity and Metabolism, 2021. 2, 28-43. 5. Cardiovascular diseases. 2021. https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds). (Accepted: 12.12.2022) 6. Carlsson B., Lindén D., Brolén G. Review article: the emerging role of genetics in precision medicine for patients with non-alcoholic steatohepatitis // Alimentary Pharmacology and Therapeutics, 2020. 51, 1305-1320. 7. Chen G., Xu Y., Lin Y. Association study of genetic variants of 17 diabetes-related genes/loci and cardiovascular risk and diabetic nephropathy in the Chinese She population // Journal of diabetes & metabolism, 2013. 5(2), 136-145. 8. Drexel H., Leiherer A., Saely C.H. SGLT2 polymorphisms linked to diabetes mellitus and cardiovascular disease? Prospective study and meta-analysis // Bioscience Reports, 2019. Are 39, Article number: BSR20190299. 9. Egorov A.D., Penkov D.N., Tkachuk V.A. Molecular and cellular mechanisms of adipogenesis. Diabetes Mellitus, 2015. 18(2)18, 12-19. 10. Eriksson J.W., Lundkvist P., Jansson P.A. Effects of dapagliflozin and n-3 carboxylic acids on non-alcoholic fatty liver disease in people with type 2 diabetes // Diabetologia, 2018. 61, 1923‐1934. 11. Fediuk D.J., Nucci G., Dawra V.K. Overview of the Clinical Pharmacology of Ertugliflozin, a Novel Sodium-Glucose Cotransporter 2 (SGLT2) Inhibitor // Clinical Pharmacokinetics, 2020. 59, 949-965. 12. Ferrannini G., Hach T., Crowe S. Energy balance after sodium-glucose cotransporter 2 inhibition // Diabetes Care, 2015. 38, 1730-1735. 13. Forxiga dapagliflozin. 2020. https://www.ema.europa.eu/en/medicines/human/summaries-opinion/forxiga-1. (Accepted: 13.12.2022) 14. Francke, S., Mamidi, R.N.V.S., Solanki, B. In vitro metabolism of canagliflozin in human liver, kidney, intestine microsomes, and recombinant uridine diphosphate glucuronosyltransferases // The Journal of Clinical Pharmacology. 2015., 55, 1061-1072. 15. Genetic Genomics Analysis of Complex Data. 2021. www.openbioinformatics.org/gengen. (Accepted: 23.04.2023) 16. Genome Aggregation Database. 2021 https://gnomad.broadinstitute.org/. (Accepted: 29.01.2023) 17. Gharanei S., Zatyka M., Astuti D. Vacuolar-type H+-ATPase V1A subunit is a molecular partner of Wolfram syndrome 1 (WFS1) protein, which regulates its expression and stability // Human Molecular Genetics, 2013. 22(2), 203-217. 18. Hall K.D., Sacks G., Chandramohan D. Quantification of the effect of energy imbalance on body weight // The Lancet, 2011. 378, 826-37. 19. Hamdy S.I., Hiratsuka M., Narahara K., El-Enany M., Moursi N., Ahmed M.S., Mizugaki M. Allele and genotype frequencies of polymorphic cytochromes P450 (CYP2C9, CYP2C19, CYP2E1) and dihydropyrimidine dehydrogenase (DPYD) in the Egyptian population // British Journal of Clinical Pharmacology, 2002. 53, 596-603. 20. Heerspink H.J.L., Stefánsson B.V., Correa-Rotter R. Dapagliflozin in Patients with Chronic Kidney Disease. The New England Journal of Medicine, 2020. 383, 1436‐1446. 21. Henry R.R., Klein E.J., Han J. Efficacy and tolerability of exenatide once weekly over 6 years in patients with type 2 diabetes // Diabetes Technology and Therapeutics, 2016. 18, 677‐86. 22. Jackson A.M., Dewan P., Anand I.S. Dapagliflozin and Diuretic Use in Patients with Heart Failure and Reduced Ejection Fraction in DAPA-HF // Circulation, 2020. 142, 1040‐1054. 23. Kadric I.S., Cesic K.A., Dujic T. Pharmacogenetics of new classes of antidiabetic drugs // Bosnian Journal of Basic Medical Sciences, 2021. 21(6), 659-671. 24. Kannel W.B., McGee D.L. Diabetes and cardiovascular disease. The Framingham studies // JAMA, 1979. 241, 2035‐2038. 25. Kasichayanula S., Liu X., Lacreta F. Clinical pharmacokinetics and pharmacodynamics of dapagliflozin, a selective inhibitor of sodium-glucose co-transporter type 2 // Clinical Pharmacokinetics, 2014. 53(1), 17-27. 26. Katzmann J.L., Mason A.M., März W. Genetic Variation in Sodium-glucose Cotransporter 2 and Heart Failure // Clinical Pharmacology and Therapeutics, 2021. 110, 149-158. 27. Klen J. Treatment Response to SGLT2 Inhibitors: From Clinical Characteristics to Genetic Variations // International Journal of Molecular Sciences, 2021. 22(18), Article number: 9800. 28. Kobalava Zh.D., Kiyakbaev G.K. Type 2 diabetes mellitus and cardiovascular complications // Russian Journal of Cardiology, 2018. 23(8), 79‐91. 29. Kohsaka S., Takeda M., Bodegard J., Thuresson M., Kosiborod M. Sodium-glucose cotransporter 2 inhibitors compared with other glucose-lowering drugs in Japan // Journal of Diabetes Investigation, 2021. 12(1), 67-73. 30. Kosiborod M., Carolyn S.P., Lam S.K, Jung K., Karasik A. Cardiovascular Events Associated With SGLT-2 Inhibitors Versus Other Glucose-Lowering Drugs // Journal of the American College of Cardiology, 2018. 71 (23), 2628-2639. 31. Kosiborod M., Cavender M.A., Fu A.Z. Lower Risk of Heart Failure and Death in Patients Initiated on SodiumGlucose Cotransporter-2 Inhibitors Versus Other Glucose-Lowering Drugs // Circulation, 2017. 136, 249-259. 32. Lam C.S.P., Chandramouli C., Ahooja V. SGLT-2 Inhibitors in Heart Failure: Current Management, Unmet Needs, and Therapeutic Prospects // Journal of the American Heart Association, 2019. 8(20), Article number: e013389. 33. Mi-Sun H., Su-Jun L., Woo-Young K., Hye-Eun J., Jae-Gook S. Genetic Variations in UDP-glucuronosyltransferase 2B15 in a Korean Population // Drug Metabolism and Pharmacokinetics, 2014. 29(1), 105-109. 34. Neal B., Perkovic V., Mahaffey K.W. Canagliflozin and cardiovascular and renal events in type 2 diabetes // The New England Journal of Medicine, 2017. 377, 644‐657. 35. Nessler J. Dapagliflozin in the treatment of patients with heart failure with reduced left ventricular ejection fraction – a practical approach // Postepy Kardiol Interwencyjnej, 2021. 17(2), 135-140. 36. Purcell S. PLINK: a tool set for whole-genome association and population-based linkage analyses // Journal of Human Genetics, 2007. 81, 559-565. 37. Ru-ping Cai, Yu-li Xu, Qiang Su. Dapagliflozin in Patients with Chronic Heart Failure // Cardiology Research and Practice, 2021, Article number: 6657380. 38. Shen J., Wong G.L., Chan H.L. PNPLA3 gene polymorphism and response to lifestyle modification in patients with nonalcoholic fatty liver disease // Journal of Gastroenterology and Hepatology, 2015. 30, 139-146. 39. Shyangdan D.S., Uthman O.A., Waugh N. SGLT-2 receptor inhibitors for treating patients with type 2 diabetes mellitus // BMJ Open, 2016. 6, Article number: e009417. 40. Steinthorsdottir V., McGinnis R.., Williams N. Genetic predisposition to hypertension is associated with preeclampsia in European and Central Asian women // Nature Communications. 2020. Vol. 11:5976. doi.org/10.1038/s41467-020-19733-6. 41. Tamargo J. Sodium-glucose cotransporter 2 inhibitors in heart failure // European Heart Journal, 2019. 14, 23-32. 42. Taylor S.I., Blau J.E., Rother K.I. SGLT2 inhibitors may predispose to ketoacidosis // Journal of Clinical Endocrinology and Metabolism, 2015. 100, 2849‐2852. 43. The International Genome Sample Resource. 2021. http://www.1000 genomes.org. (Accepted: 18.05.2023) 44. The number of patients with heart disease is increasing worldwide. Why is this happening? 2018. https://cutt.ly/dVgq8Wp. (Accepted: 04.05.2023) 45. Verma S., McMurray J.J.V. SGLT2 inhibitors and mechanisms of cardiovascular benefit // Diabetologia, 2018.61, 2108-2017. 46. Wong N.D., Blaha M. The CVD-REAL Study: A Real-World Look at the Effectiveness of SLGT-2 Inhibitors American College of cardiology. 2017. https://www.acc.org/latest-in-cardiology/articles/2017/12/04/12/15/the-cvd-real-study. (Accepted: 18.12.2022) 47. Zhou X., Cao L., Jiang C. PPARα-UGT axis activation represses intestinal FXR-FGF15 feedback signalling and exacerbates experimental colitis // Nature Communications, 2014. 5, Article number: 4573. 48. Zimdahl H., Haupt A., Brendel M. Influence of common polymorphisms in the SLC5A2 gene on metabolic traits in subjects at increased risk of diabetes and on response to empagliflozin treatment in patients with diabetes // Pharmacogenet Genomics, 2017. 27, 135-142
Количество просмотров: 228

Ключевые слова:


Библиографическая ссылка

Svyatova G., Berezina G., Pashimov M., Mussagaliyeva A., Murtazaliyeva A., Danyarova L., Rakisheva A., Nurzhanova M. Population features of the genetic marker’s distribution of the heart failure effectiveness therapy with SGLT2 inhibitors in the Kazakh population // Nauka i Zdravookhranenie [Science & Healthcare]. 2023, (Vol.25) 4, pp. 49-58. doi 10.34689/SH.2023.25.4.006

Авторизируйтесь для отправки комментариев