Online ISSN: 3007-0244,
Print ISSN:  2410-4280
STUDY OF THE RELATIONSHIP BETWEEN TRIMETHYLAMINE N-OXIDE (TMAO) LEVELS AND CLINICAL PARAMETERS IN PATIENTS WITH ST-SEGMENT ELEVATION ACUTE CORONARY SYNDROME
Relevance: There are classic risk factors for atherosclerosis - gender, ethnicity, family history, diabetes mellitus, chronic kidney disease, obesity, hypertension, smoking. Research continues into traditional theories of atherosclerosis such as dyslipidemia, infection, and inflammation. Based on these theories, appropriate studies of blood lipids, C-reactive protein, and homocysteine are carried out in clinical practice. However, new factors are currently being identified in the pathogenesis of atherosclerosis - air pollution with microparticles, disruption of clonal hematopoiesis and changes in the proatherogenic metabolic biomarker trimethylamine N-oxide. Large studies have shown that TMAO may be a predictor of cardiovascular disease risk. TMAO is synthesized by intestinal microflora and studies are being conducted on these metabolic pathways and the factors influencing TMAO levels. In this regard, it is necessary to study the correlating relationship between the level of TMAO and a number of clinical indicators. The aim: Based on clinical studies of patients with acute coronary syndrome with ST segment elevation, analyze possible predictors of changes in TMAO levels. Materials and methods: The study was conducted as part of a larger body of research on the effects of dietary remodeling of the gut microbiota on oxidative status, trimethylamine oxide (TMAO) levels, and recurrent cardiovascular events after STEMI. The work hypothesized that there is a relationship between the resulting TMAO variable and a number of clinical indicators. Results: To the greatest extent, changes in TMAO concentrations depend on the composition of the intestinal microbiome. Plasma TMAO levels have previously been shown to be determined by several factors, including consumption of its metabolic precursors, medications, and hepatic flavinmonooxygenase FMO activity. Conclusion: The work analyzed the dependence of TMAO levels on 43 clinical indicators. It was revealed that there was a statistically significant correlation between the level of the coronary SYNTAX Score I scale, the presence of peptic ulcer disease and social status.
Shyngys D. Sergazy1, https://orcid.org/0000-0002-6030-620X Azamat K. Zhashkeyev2*, https://orcid.org/0000-0003-2695-4569 Zhaxybay Sh. Zhumadilov1, https://orcid.org/0009-0001-0433-8290 1 National Laboratory Astana, Nazarbayev University, Astana, Republic of Kazakhstan; 2 Karaganda Medical University, Karaganda, Republic of Kazakhstan.
1. Barrett E.L., Kwan H.S. Bacterial reduction of trimethylamine oxide // Annu Rev Microbiol. 1985. 39:131–49. 2. Boini K.M., Hussain T., Li P.L., Koka S.Trimethylamine-N-oxide instigates NLRP3 inflammasome activation and endothelial dysfunction // Cell PhysiolBiochem. 2017. 44:152–62. 3. Cho C.E., Caudill M.A.Trimethylamine-N-oxide: friend, foe, or simply caught in the cross-fire? // Trends EndocrinolMetab. 2017. 28:121–30. 4. Cho C.E., Taesuwan S., Malysheva O.V., Bender E., Tulchinsky N.F., Yan J.Trimethylamine-N-oxide (TMAO) response to animal source foods varies among healthy young men and is influenced by their gut microbiota composition: a randomized controlled trial // MolNutr Food Res. 2017. 61.https://doi.org/10.1002/mnfr.201600324. 5. Heianza Y., Ma W., Manson J.E., Rexrode K.M., Qi L. Gut microbiotaemtabolites and risk of major adverse cardiovascular disease events and death: a systematic review and meta-analysis of prospective studies // J Am Heart Assoc. 2017. 6:e004947. 6. Higgins J.P., Thompson S.G. Quantifying heterogeneity in a meta-analysis // Stat Med. 2002. 21:1539–58. 7. Koeth R.A., Wang Z., Levison B.S. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis // Nat Med. 2013.19:576–85. https://doi. org/10.1038/nm.3145. 8. Lever M., George P.M., Slow S., Bellamy D., Young J.M., Ho M.Betaine and trimethylamine-N-oxide as predictors of cardiovascular outcomes show different patterns in diabetes mellitus: an observational study // PLoS One. 2014. 9:e114969. 9. Li D.Y., Tang W.H.W. Gut microbiota and atherosclerosis // CurrAtheroscler Rep. 2017. 19:39. 10. Li X.S., Obeid S., Klingenberg R., Gencer B., Mach F., Räber L. Gut microbiota-dependent trimethylamine N-oxide in acute coronary syndromes: a prognostic marker for incident cardiovascular events beyond traditional risk factors // Eur Heart J. 2017. 38:814–24. 11. Liu Q., Cook N.R., Bergström A., Hsieh C.C. A two-stage hierarchical regression model for meta-analysis of epidemiologic nonlinear dose-response data // Comput Stat Data Anal. 2009. 53:4157–67. 12. Loscalzo J. Gut microbiota, the genome, and diet in atherogenesis // N Engl J Med. 2013; 368:1647–9. 13. Ma G., Pan B., Chen Y., Guo C., Zhao M., Zheng L. Trimethylamine N-oxide in atherogenesis: impairing endothelial self-repair capacity and enhancing monocyte adhesion // Biosci Rep. 2017. 37:BSR20160244. 14. Ma J., Pazos I.M., Gai F. Microscopic insights into the protein-stabilizing effect of trimethylamine N-oxide (TMAO) // ProcNatlAcadSci U S A. 2014. 111:8476–81. 15. Matsuzawa Y., Nakahashi H., Konishi M., Sato R., Kawashima C., Kikuchi S. Microbiota-derived Trimethylamine N-oxide predicts cardiovascular risk after STEMI // Sci Rep. 2019. 9:11647. 16. Orsini N., Li R., Wolk A., Khudyakov P., Spiegelman D. Meta-analysis for linear and nonlinear dose-response relations: examples, an evaluation of approximations, and software // Am J Epidemiol. 2012; 175:66–73. 17. Parmar M.K., Torri V., Stewart L. Extracting summary statistics to perform meta-analyses of the published literature for survival endpoints // Stat Med. 1998. 17:2815–34. 18. Rak K., Rader D.J. Cardiovascular disease: the diet-microbe morbid union // Nature. 2011. 472:40–1. 19. Schiattarella G.G., Sannino A., Toscano E., Giugliano G., Gargiulo G., Franzone A. Gut microbe-generated metabolite trimethylamine-N-oxide as cardiovascular risk biomarker: a systematic review and dose-response meta-analysis // Eur Heart J. 2017. 38:2948–56. 20. Seldin M.M., Meng Y., Qi H., Zhu W., Wang Z., Hazen S.L.Trimethylamine N-oxide promotes vascular inflammation through signaling of mitogen-activated protein kinase and nuclear factor-κB // J Am Heart Assoc. 2016. 5:e002767. 21. Senthong V., Wang Z., Li X.S., Fan Y., Wu Y., Tang W.H. Intestinal microbiota-generated metabolite trimethylamine-N-oxide and 5-year mortality risk in stable coronary artery disease: the contributory role of intestinal microbiota in a COURAGE-like patient cohort // J Am Heart Assoc. 2016. 5:e002816. 22. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses // Eur J Epidemiol. 2010. 25:603–5. 23. Stroup D.F., Berlin J.A., Morton S.C., Olkin I., Williamson G.D., Rennie D. et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis of observational studies in epidemiology (MOOSE) group. JAMA. 2000.283:2008–12. 24. Suzuki T., Heaney L.M., Jones D.J., Leong L. Ng Trimethylamine N-oxide and Risk Stratification after Acute Myocardial Infarction // Clinical Chemistry. 2017. 63: 420–428. https://doi: 10.1373/clinchem.2016.264853 25. Suzuki T., Heaney L.M., Jones D.J., Ng L.L. Trimethylamine N-oxide and risk stratification after acute myocardial infarction // Clin Chem. 2017. 63:420–8. 26. Tang W.H.W., Hazen S.L. The contributory role of gut microbiota in cardiovascular disease // J Clin Invest. 2014. 124:4204–11. https://doi.org/10.1172/JCI72331. 27. Tang W.H.W., Wang Z., Levison B.S. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk // N Engl J Med. 2013. 368:1575–84. https://doi. org/10.1056/NEJMoa1109400. 28. Tilg H. A gut feeling about thrombosis // N Engl J Med. 2016. 374:2494–6. 29. Wang Z., Klipfell E., Bennett B.J., Koeth R., Levison B.S., Dugar B. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease // Nature. 2011. 472:57–63. 30. Wang Z., Roberts A.B., Buffa J.A. Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis // Cell, 2015. 163:1585–95. https://doi. org/10.1016/j.cell.2015.11.055. 330. 31. Wang Z., Tang W.H., Buffa J.A., Fu X., Britt E.B., Koeth R.A. Prognostic value of choline and betaine depends on intestinal microbiota-generated metabolite trimethylamine-N-oxide // Eur Heart J. 2014. 35:904–10. 32. Xu K.-Z., Lin L.-M., Wu Y., Xu J.-H., Wu M.-F. Relationship between the plasma level of trimethylamine N-oxide and complication risk in patients with acute myocardial infarction // Chin J Arterioscler. 2018. 26:497–502. 33. Yancey P.H. Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses // J Exp Biol. 2005. 208:2819–30. 34. Zhu W., Gregory J.C., Org E. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk // Cell. 2016. 165:111–24. https://doi.org/10.1016/j. cell.2016.02.011. 334. Al-Waiz M, Mikov M, Mitchell SC 35. Zhu W., Gregory J.C., Org E., Buffa J.A., Gupta N., Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk // Cell. 2016. 165:111–24.
Количество просмотров: 378

Ключевые слова:


Библиографическая ссылка

SergazySh.D., Zhashkeyev A.K., Zhumadilov Zh.Sh. Study of the relationship between Trimethylamine N-oxide (TMAO) levels and clinical parameters in patients with ST-segment elevation acute coronary syndrome // Nauka i Zdravookhranenie [Science & Healthcare]. 2023, (Vol.25) 5, pp. 34-44. doi 10.34689/SH.2023.25.5.004

Авторизируйтесь для отправки комментариев