Online ISSN: 3007-0244,
Print ISSN:  2410-4280
СОЛ ЖАҚ ҚАРЫНШАНЫҢ ИМПЛАНТАЦИЯЛАНҒАН МЕХАНИКАЛЫҚ АППАРАТЫ БАР НАУҚАСТАРДАҒЫ ГЕМАТОЛОГИЯЛЫҚ АСҚЫНУЛАРДЫҢ СЕБЕПТЕРІ МЕН МЕХАНИЗМДЕРІ
Кіріспе. Созылмалы жүрек жеткіліксіздігі Қазақстан Республикасының денсаулық сақтау саласындағы негізгі проблемаларының бірі болып табылады. Жүрек жеткіліксіздікті емдеу үшін және пациенттің өмірін ұзарту үшін жүрек трансплантациясы (ЖТ) қажет. ЖТ орындау әр пациент үшін мүмкін емес, өйткені жүрек донорлардың саны шектеулі. Қазіргі уақытта сол жақ қарыншаның көмекші аппаратын (left ventricular assist device, LVAD) имплантациялау әдісі жүрек трансплантациясының балама әдісі болып табылады. Осы имплантация әдісі пациенттерге жүрек трансплантациясына дейін өмір сүруге мүмкіндік береді. Алайда, LVAD құрылғысы жүрек жеткіліксіздігі бар пациенттерде қан ағу және ұйығу жанама әсерлерін тудырады. Мақсаты. Имплантацияланған LVAD сол жақ қарыншалық механикалық аппараты бар пациенттерде гематологиялық асқынулардың себептері мен механизмдерін мақалардан қарастыру. Іздену стратегиясы. Әдебиеттерді іздеу: Web of Science, ResearchGate, PubMed, Google Academy, elibrary.ru. іздеу тереңдігі шектелмеген. Басылымдарды әдебиетті шолуға қосу критерийлері анықталды - бұл толық мәтіні бар, орыс және ағылшын тілдеріндегі, статистикалық түрде тексерілген қорытындылары бар жариялымдар. 73 әдеби дереккөзден 54 осы мақалаға аналитикалық материал ретінде таңдалды. Нәтижелер. LVAD роторының жоғары физиологиялық емес стрессі (non-physiologic shear stress, NPSS) 5000 - нан 12000 - дейін бір минутта айналып қанның ұйығумен ағуының себебі болып келеді. Жоғары ығысу стрессі тромбоциттердің гликопротеин рецепторларын (GPIbα, GPVI және GPIIb / IIIa), коагуляция жүйесінің, гемостаздың бұзылуына және фактор фон Виллебанд мультимимерлерінің тозуына ықпал етеді. Сондай-ақ, бүгінгі таңда тромбоциттер рецепторларының генетикалық полиморфизмі LVAD имплантациясы кезінде қанның ұйығу және ағу қаупін төмендетуге әсер етуі мүмкін. Ол осы саладағы перспективті бағыт болып табылады. Рецепторларды кодтайтын гендердің мутациясы тромбоциттердің функциясының өзгеруіне әкелуі мүмкін, осылайша механикалық LVAD құрылғысымен емдеу нәтижесіне әсер етеді. Қорытынды. LVAD құрылғысы орнатылған пациенттерде қанның ағуымен ұйығуын тоқтату үшін фактор Фон Виллебранд және гликопротеин рецепторлары гемостаздың бірқалыпты процесін сақтау үшін өте маңызды.
Мадина Р. Жалбинова 1,2, https://orcid.org/0000-0001-9704-8913 Сауле Е. Рахимова 1, http://orcid.org/0000-0002-8245-2400 Махаббат С. Бекбосынова 3, Салтанат А. Андосова 3, Айнур Р. Акильжанова 1,2, http://orcid.org/0000-0001-6161-8355 1 National Laboratory Astana, Назарбаев университеті, Нұр-Сұлтан қ., Қазақстан Республикасы; 2 Л.Н.Гумилев атындағы Еуразия ұлттық университеті, Нұр-Сұлтан қ., Қазақстан Республикасы; 3 «Ұлттық ғылыми кардиохирургия орталыгы» АҚ, Нұр-Сұлтан қ., Қазақстан Республикасы;
1. Габриелян А.В. Современные методы хирургического лечения рефракторной сердечной недостаточности при ишемической болезни сердца // Клиническая хирургия. 2014. № 1.2. С. 52-55. 2. Зординова К.А., Гуламова Г.М., Касымова Л.М., Кадрахунова Ж.К., Бисеитова Г.А. Фармакоэкономический анализ использования Клопидогрела в условиях Казахстана // Вестник АГИУВ. 2011. №3. С. 40-43. 3. Канатбаева А.А. Профилактика и лечение сердечно-сосудистых заболеваний (АГ, ИБС) // Вестник КазНМУ. 2013. №4(1). С. 139-141. 4. МакЛарти А. Механическая поддержка кровообращения и роль устройств механической поддержки левого желудочка в лечении сердечной недостаточности // Clinical Medicine Insights. Cardiology. 2015. №3. С. 17-22. 5. Пя Ю.В., Бекбосынов С.Т., Бекбосынова М.С., Джетыбаева С.К., Андосова С.А., Салов Р.В., Медресова А.Т., Мурзагалиев М.У., Новикова С.П. Механическая поддержка кровообращения при терминальной сердечной недостаточности. Опыт Республики Казахстан // Грудная и сердечно-сосудистая хирургия. 2015. №1. C. 31-36. 6. Пя Ю.В., Бекбосынов С.Т., Бекбосынова М.С., Куатбаев Е.М., Лесбеков Т.Д., Калиев Р.Б., Джетыбаева С.К., Медресова А.Т., Нурмыхаметова Ж.А., Мурзагалиев М.У., Новикова С.П., Капышев Т.С., Смагулов Н.К., Фаизов Л.Р., Вахрушев И.А.,. Андосова С.А., Мырзахметова Г.Ш., Надирбекова Г.Е., Шайсултанова С.Т., Дюсенбина Ж.С. Программа трансплантации сердца в эпоху механической поддержки кровообращения: опыт Республики Казахстан // Журнал имени академика Б.В. Петровского Клиническая и экспериментальная хирургия. 2017. Том 5. №3. С. 49-53. 7. Пя Ю.В., Бекбосынов С.Т., Бекбосынова М.С., Медресова А.Т., Андосова С.А., Джетыбаева С.К., Мурзагалиев М.У., Новикова С.П. Использование современных устройств механической поддержки кровообращения как альтернативы трансплантации сердца у пациентов с терминальной сердечной недостаточностью // Журнал имени академика Б.В. Петровского Клиническая и экспериментальная хирургия. 2017. №1. C. 7-14. 8. Пя. Ю.В., Бекбосынова М. С., Бекбосынов С.Т., Салов Р.В., Джетыбаева С.К., Андосова С.А. Хирургическое лечение хронической сердечной недостаточности - имплантация вспомогательных устройств (искусственные желудочки сердца (LVAD, RVAD, BiVAD), искусственного сердца (TAH) и трансплантация донорского сердца // Протокол. 2013. №18. 9. Ситникова М.Ю., Федотов П.А., Прокопова Л.В. Высокотехнологичные методы лечения хронической сердечной недостаточности // Кардиология. 2017. № 2 (13). C. 104-119. 10. Степаненко А., Романченко О., Дубаев А., Дранишников Н., Швайгер М., Фирэке Ю., Потапов Е., Пасич М., Венг Ю., Хюьлер М., Хетцер Р., Крабач Т. Механическая поддержка кровообращения – опыт самой большой в Европе программы «искусственное сердце» // Вестник экспериментальной и клинической хирургии. 2012. Том 5. № 1. С. 145-153. 11. Aliseda A., Chivukula V.K., McGah P., Prisco A.R., Beckman J.A., Garcia G. J., Mokadam N.A., Mahr C. LVAD Outflow Graft Angle and Thrombosis Risk // ASAIO J. 2017. 63(1). P. 14-23. 12. Ashbrook M., Walenga J. M., Schwartz J., Heroux A., Jeske W. P., Escalante V., Bakhos M. Left ventricular assist device-induced coagulation and platelet activation and effect of the current anticoagulant therapy regimen // Clin Appl Thromb Hemost. 2013. 19(3). P. 249-55. 13. Baghai M., Heilmann C., Beyersdorf F., Nakamura L., Geisen U., Olschewski M., Zieger B. Platelet dysfunction and acquired von Willebrand syndrome in patients with left ventricular assist devices // Eur J Cardiothorac Surg. 2015. 48(3). P. 421-7. 14. Birschmann I., Dittrich M., Eller T., Wiegmann B., Reininger A. J., Budde U., Struber M. Ambient hemolysis and activation of coagulation is different between HeartMate II and HeartWare left ventricular assist devices // J Heart Lung Transplant. 2014. 33(1). P. 80-7. 15. Chen Z., Koenig S.C., Slaughter M.S., Griffith B.P., Wu Z.J. Quantitative Characterization of Shear-Induced Platelet Receptor Shedding: Glycoprotein Ibalpha, Glycoprotein VI, and Glycoprotein IIb/IIIa // ASAIO J. 2018. 64(6). P. 773-778. 16. Chen Z., Mondal N.K., Ding J., Gao J., Griffith B.P., Wu Z.J. Shear-induced platelet receptor shedding by non-physiological high shear stress with short exposure time: glycoprotein Ibalpha and glycoprotein VI // Thromb Res. 2015. 135(4). P. 692-8. 17. Chen Z., Mondal N.K., Ding J., Koenig S.C., Slaughter M.S., Griffith B.P., Wu Z.J. Activation and shedding of platelet glycoprotein IIb/IIIa under non-physiological shear stress // Mol Cell Biochem. 2015. 409(1-2). P. 93-101. 18. Cheng A., Williamitis C.A., Slaughter M.S. Comparison of continuous-flow and pulsatile-flow left ventricular assist devices: is there an advantage to pulsatility? // Ann Cardiothorac Surg. 2014. 3(6). P. 573-81. 19. Chen Z., Zhang J., Kareem K., Tran D., Conway R.G., Arias K., Griffith B.P., Wu Z.J. Device-induced platelet dysfunction in mechanically assisted circulation increases the risks of thrombosis and bleeding // Artif Organs. 2019. 43(8). P. 745-755. 20. Consolo F., Sferrazza G., Motolone G., Contri R., Valerio L., Lembo R., Pozzi L., Della Valle P., De Bonis M., Zangrillo A., Fiore G.B., Redaelli A., Slepian M.J., Pappalardo F. Platelet activation is a preoperative risk factor for the development of thromboembolic complications in patients with continuous-flow left ventricular assist device // Eur J Heart Fail. 2018. 20(4). P. 792-800. 21. Consolo F., Sferrazza G., Motolone G., Pieri M., De Bonis M., Zangrillo A., Redaelli A., Slepian M.J., Pappalardo F. Shear-Mediated Platelet Activation Enhances Thrombotic Complications in Patients With LVADs and Is Reversed After Heart Transplantation // ASAIO J. 2019. 65(4). P. e33-e35 22. Eckman P.M., John R. Bleeding and thrombosis in patients with continuous-flow ventricular assist devices // Circulation. 2012. 125(24). P. 3038-47. 23. Fatullayev J., Samak M., Sabashnikov A., Zeriouh M., Rahmanian P.B., Choi Y. H., Schmack B., Kallenbach K., Ruhparwar A., Eghbalzadeh K., Dohmen P.M., Karck M. et al. Continuous-Flow Left Ventricular Assist Device Thrombosis: A Danger Foreseen is a Danger Avoided // Med Sci Monit Basic Res. 2015. 21: P. 141-4. 24. Garbade J., Bittner H.B., Barten M.J., Mohr F.W. Current trends in implantable left ventricular assist devices // Cardiol Res Pract. 2011. Vol. 2011. P. 1-9. 25. Gurvits G.E., Fradkov E. Bleeding with the artificial heart: Gastrointestinal hemorrhage in CF-LVAD patients // World J Gastroenterol. 2017. 23(22). P. 3945-3953. 26. Hu J., Mondal N.K., Sorensen E.N., Cai L., Fang H.B., Griffith B.P., Wu Z.J. Platelet glycoprotein Ibalpha ectodomain shedding and non-surgical bleeding in heart failure patients supported by continuous-flow left ventricular assist devices // J Heart Lung Transplant. 2014. 33(1). P. 71-9. 27. Jaffer I.H., Fredenburgh J.C., Hirsh J., Weitz J.I. Medical device-induced thrombosis: what causes it and how can we prevent it? // J Thromb Haemost. 2015. P. S72-81. 28. Jaganathan S.K., Supriyanto E., Murugesan S., Balaji A., Asokan M.K. Biomaterials in cardiovascular research: applications and clinical implications // Biomed Res Int. 2014. Vol.2014. P. 1-11. 29. John R., Panch S., Hrabe J., Wei P., Solovey A., Joyce L., Hebbel R. Activation of Endothelial and Coagulation Systems in Left Ventricular Assist Device Recipients // The Annals of Thoracic Surgery. 2009. 88(4). P. 1171-1179. 30. Kadakia S., Moore R., Ambur V., Toyoda Y. Current status of the implantable LVAD // Gen Thorac Cardiovasc Surg. 2016. 64(9). P. 501-8. 31. Klovaite J., Gustafsson F., Mortensen S.A., Sander K., Nielsen L.B. Severely impaired von Willebrand factor-dependent platelet aggregation in patients with a continuous-flow left ventricular assist device (HeartMate II) // J Am Coll Cardiol. 2009. 53(23). P. 2162-7. 32. Koliopoulou A., McKellar S.H., Rondina M., Selzman C.H. Bleeding and thrombosis in chronic ventricular assist device therapy: focus on platelets // Curr Opin Cardiol. 2016. 31(3). P. 299-307. 33. Koliopoulou A., Selzman C.H. Stop the LVAD bleeding // J Thorac Dis. 2017. 9(5). P. E437-E439. 34. Kushnir V.M., Sharma S., Ewald G.A., Seccombe J., Novak E., Wang I.W., Joseph S.M., Gyawali C.P. Evaluation of GI bleeding after implantation of left ventricular assist device // Gastrointest Endosc. 2012. 75(5). P. 973-9. 35. Meyer A.L., Malehsa D., Bara C., Budde U., Slaughter M.S., Haverich A., Strueber M. Acquired von Willebrand syndrome in patients with an axial flow left ventricular assist device // Circ Heart Fail. 2010. 3(6). P. 675-81. 36. Mondal N.K., Sorensen E.N., Hiivala N.J., Feller E.D., Pham S.M., Griffith B.P.,Wu Z.J. Intraplatelet reactive oxygen species, mitochondrial damage and platelet apoptosis augment non-surgical bleeding in heart failure patients supported by continuous-flow left ventricular assist device // Platelets. 2015. 26(6). P. 536-44. 37. Muslem R., Caliskan K., Leebeek F.W.G. Acquired coagulopathy in patients with left ventricular assist devices // J Thromb Haemost. 2018. 16(3). P. 429-440 38. Nascimbene A., Neelamegham S., Frazier O.H., Moake J.L., Dong J.F. Acquired von Willebrand syndrome associated with left ventricular assist device // Blood. 2016. 127(25). P. 3133-41. 39. Nose Y. Heart failure: Continuous-flow LVADs improve clinical outcomes // Nat Rev Cardiol.2010. 7(4). P. 184-6. 40. Pillitteri D., Pilgrimm A.K., Kirchmaier C.M. Novel Mutations in the GPIIb and GPIIIa Genes in Glanzmann Thrombasthenia // Transfus Med Hemother. 2010. 37(5). P. 268-277. 41. Potapov E.V., Ignatenko S., Nasseri B.A., Loebe M., Harke C., Bettmann M., Doller A., Regitz-Zagrosek V., Hetzer R. Clinical significance of PlA polymorphism of platelet GP IIb/IIIa receptors during long-term VAD support // Ann Thorac Surg. 2004. 77(3). P. 869-74. 42. Pya Y., Bekbossynova M., Jetybayeva S., Bekbossynov S., Andossova S., Salov R., Medressova A., Novikova S., Murzagaliyev M. Initial 3-year outcomes with left ventricular assist devices in a country with a nascent heart transplantation program // ESC Heart Fail. 2016. 3(1). p. 26-34. 43. Radovancevic R., Matijevic N., Bracey A.W., Radovancevic B., Elayda M., Gregoric I.D., Frazier O.H. Increased leukocyte-platelet interactions during circulatory support with left ventricular assist devices // ASAIO J. 2009. 55(5). P. 459-64. 44. Schlendorf K., Patel C.B., Gehrig T., Kiefer T.L., Felker G.M., Hernandez A.F., Blue L.J., Milano C.A., Rogers J.G. Thrombolytic therapy for thrombosis of continuous flow ventricular assist devices // J Card Fail. 2014. 20(2). P. 91-7 45. Selgrade B.P., Truskey G.A. Computational fluid dynamics analysis to determine shear stresses and rates in a centrifugal left ventricular assist device // Artif Organs. 2012. 36(4). P. E89-96. 46. Slaughter M.S. Hematologic effects of continuous flow left ventricular assist devices // J Cardiovasc Transl Res. 2010. 3(6). P. 618-24. 47. Slaughter M.S., Sobieski II M. A., Graham J.D., Pappas P.S., Tatooles A.J., Koenig S.C. Platelet activation in heart failure patients supported by the HeartMate II ventricular assist device // Int J Artif Organs. 2011. 34(6). P. 461-8. 48. Steinlechner B., Dworschak M., Birkenberg B., Duris M., Zeidler P., Fischer H., Milosevic L., Wieselthaler G., Wolner E., Quehenberger P., Jilma B. Platelet dysfunction in outpatients with left ventricular assist devices // Ann Thorac Surg. 2009. 87(1). p. 131-7. 49. Suarez J., Patel C.B., Felker G.M., Becker R., Hernandez A.F., Rogers J.G. Mechanisms of bleeding and approach to patients with axial-flow left ventricular assist devices // Circ Heart Fail. 2011. 4(6). P. 779-84 50. Susen S., Rauch A., Van Belle E., Vincentelli A., Lenting P.J. Circulatory support devices: fundamental aspects and clinical management of bleeding and thrombosis // J Thromb Haemost. 2015. 13(10). P. 1757-67 51. Szarszoi O., Maly J., Turek D., Urban M., Skalsky I., Riha H., Maluskova J., Pirk J., Netuka I. Implantation of Left Ventricular Assist Device Complicated by Undiagnosed Thrombophilia // Tex Heart Inst J. 2012. 39(5). P. 615-7. 52. Valerio L., Consolo F., Bluestein D., Tran P., Slepian M., Redaelli A., Pappalardo F. Shear-mediated platelet activation in patients implanted with continuous flow LVADs: A preliminary study utilizing the platelet activity state (PAS) assay // Conf Proc IEEE Eng Med Biol Soc. 2015 Aug. P. 1255-8. 53. Valerio L., Tran P.L., Sheriff J., Brengle W., Ghosh R., Chiu W.C., Redaelli A., Fiore G.B., Pappalardo F., Bluestein D., Slepian M.J. Aspirin has limited ability to modulate shear-mediated platelet activation associated with elevated shear stress of ventricular assist devices // Thromb Res. 2016. Vol. 140. P. 110-117. 54. Vincent F., Rauch A., Loobuyck V., Robin E., Nix C., Vincentelli A., Smadja D.M., Leprince P., Amour J., Lemesle G., Spillemaeker H., Debry N. et al. Arterial Pulsatility and Circulating von Willebrand Factor in Patients on Mechanical Circulatory Support // J Am Coll Cardiol. 2018. 71(19). P. 2106-2118. 55. Wever-Pinzon O., Selzman C.H., Drakos S.G., Saidi A., Stoddard G.J., Gilbert E.M., Labedi M., Reid B.B., et al. Pulsatility and the risk of nonsurgical bleeding in patients supported with the continuous-flow left ventricular assist device HeartMate II // Circ Heart Fail. 2013. 6(3). P. 517-26. 56. Zimpfer D., Netuka I., Schmitto J.D., Pya Y., Garbade J., Morshuis M., Beyersdorf F., Marasco S., Rao V., Damme L., Sood P., Krabatsch T. Multicentre clinical trial experience with the HeartMate 3 left ventricular assist device: 30-day outcomes // Eur J Cardiothorac Surg. 2016. 50(3). P. 548-54. References: 1. Gabrielyan A.V. Sovremennye metody khirurgicheskogo lecheniya refraktornoi serdechnoi nedostatochnosti pri ishemicheskoi bolezni serdtsa [Modern methods of surgical treatment of refractory heart failure in coronary heart disease]. Klinicheskaya khirurgiya [Clinical Surgery]. 2014. № 1.2. pp. 52-55. [in Russia] 2. Zordinova K.A., Gulamova G.M., Kasymova L.M., Kadrakhunova Zh.K., Biseitova G.A. Farmakoekonomicheskii analiz ispol'zovaniya Klopidogrela v usloviyakh Kazakhstana [Pharmacoeconomic analysis of the use of clopidogrel in Kazakhstan]. Vestnik AGIUV [Journal ASIAME]. 2011. №3. pp. 40-43. [in Russia] 3. Kanatbaeva A.A. Profilaktika i lechenie serdechno-sosudistykh zabolevanii (AG, IBS) [Prevention and treatment of cardiovascular diseases (AH, CHD)]. Vestnik KazNMU [ Journal KazNMU]. 2013. №4(1). pp. 139-141. [in Russia] 4. MakLarti A. Mekhanicheskaya podderzhka krovoobrashcheniya i rol' ustroistv mekhanicheskoi podderzhki levogo zheludochka v lechenii serdechnoi nedostatochnosti [Mechanical circulatory support and the role of LVADs in heart failure therapy]. Clinical Medicine Insights. Cardiology. [Clinical Medicine Insights. Cardiology] 2015. №3. pp. 17-22. [in Russia] 5. Pya Yu.V., Bekbosynov S.T., Bekbosynova M.S., Dzhetybaeva S.K., Andosova S.A., Salov R.V., Medresova A.T., Murzagaliev M.U., Novikova S.P. Mekhanicheskaya podderzhka krovoobrashcheniya pri terminal'noi serdechnoi nedostatochnosti. Opyt Respubliki Kazakhstan [Mechanical circulatory support in terminal heart failure. Experience of the Republic of Kazakhstan]. Grudnaya i serdechno-sosudistaya khirurgiya [Thoracic and cardiovascular surgery]. 2015. №1. pp. 31-36. [in Russia] 6. Pya Yu.V., Bekbosynov S.T., Bekbosynova M.S., Kuatbaev E.M., Lesbekov T.D., Kaliev R.B., Dzhetybaeva S.K., Medresova A.T., Nurmykhametova Zh.A., Murzagaliev M.U., Novikova S.P., Kapyshev T.S., Smagulov N.K., Faizov L.R., Vakhrushev I.A.,. Andosova S.A., Myrzakhmetova G.Sh., Nadirbekova G.E., Shaisultanova S.T., Dyusenbina Zh.S. Programma transplantatsii serdtsa v epokhu mekhanicheskoi podderzhki krovoobrashcheniya: opyt Respubliki Kazakhstan [The program of the heart transplantation in the era of mechanical support of blood circulation: the experience of the Republic of Kazakhstan]. Zhurnal imeni akademika B.V. Petrovskogo Klinicheskaya i eksperimental'naya khirurgiya [Journal named after academician B.V. Petrovsky Clinical and experimental surgery.]. 2017. Tom 5. №3. pp. 49-53. [in Russia] 7. Pya Yu.V., Bekbosynov S.T., Bekbosynova M.S., Medresova A.T., Andosova S.A., Dzhetybaeva S.K., Murzagaliev M.U., Novikova S.P. Ispol'zovanie sovremennykh ustroistv mekhanicheskoi podderzhki krovoobrashcheniya kak al'ternativy transplantatsii serdtsa u patsientov s terminal'noi serdechnoi nedostatochnost'yu [The use of modern devices for mechanical support of blood circulation as an alternative to heart transplantation in patients with terminal heart failure]. Zhurnal imeni akademika B.V. Petrovskogo Klinicheskaya i eksperimental'naya khirurgiya [Journal named after Academician B.V. Petrovsky Clinical and experimental surgery.]. 2017. №1. pp. 7-14. [in Russia] 8. Pya. Yu.V., Bekbosynova M. S., Bekbosynov S.T., Salov R.V., Dzhetybaeva S.K., Andosova S.A. Khirurgicheskoe lechenie khronicheskoi serdechnoi nedostatochnosti - implantatsiya vspomogatel'nykh ustroistv (iskusstvennye zheludochki serdtsa (LVAD, RVAD, BiVAD), iskusstvennogo serdtsa (TAH) i transplantatsiya donorskogo serdtsa [Surgical treatment of chronic heart failure - implantation of assistive devices (artificial heart ventricles (LVAD, RVAD, BiVAD), artificial heart (TAH) and donor heart transplantation]. Protokol [Protocol]. 2013. №18. [in Russia] 9. Sitnikova M.Yu., Fedotov P.A., Prokopova L.V. Vysokotekhnologichnye metody lecheniya khronicheskoi serdechnoi nedostatochnosti [High-technological treatments for chronic heart failure]. Kardiologiya [Cardiology.]. 2017. № 2 (13). pp. 104-119. [in Russia] 10. Stepanenko A., Romanchenko O., Dubaev A., Dranishnikov N., Shvaiger M., Fireke Yu., Potapov E., Pasich M., Veng Yu., Khyu'ler M., Khettser R., Krabach T. Mekhanicheskaya podderzhka krovoobrashcheniya – opyt samoi bol'shoi v Evrope programmy «iskusstvennoe serdtse» [Mechanical support of blood circulation - the experience of the largest artificial heart program in Europe]. Vestnik eksperimental'noi i klinicheskoi khirurgii [Journal of experimental and clinical surgery.]. 2012. Tom 5. № 1. pp. 145-153. [in Russia] 11. Aliseda A., Chivukula V.K., McGah P., Prisco A.R., Beckman J.A., Garcia G. J., Mokadam N.A., Mahr C. LVAD Outflow Graft Angle and Thrombosis Risk. ASAIO J. 2017. 63(1). P. 14-23. 12. Ashbrook M., Walenga J. M., Schwartz J., Heroux A., Jeske W. P., Escalante V., Bakhos M. Left ventricular assist device-induced coagulation and platelet activation and effect of the current anticoagulant therapy regimen. Clin Appl Thromb Hemost. 2013. 19(3). P. 249-55. 13. Baghai M., Heilmann C., Beyersdorf F., Nakamura L., Geisen U., Olschewski M., Zieger B. Platelet dysfunction and acquired von Willebrand syndrome in patients with left ventricular assist devices. Eur J Cardiothorac Surg. 2015. 48(3). P. 421-7. 14. Birschmann I., Dittrich M., Eller T., Wiegmann B., Reininger A. J., Budde U., Struber M. Ambient hemolysis and activation of coagulation is different between HeartMate II and HeartWare left ventricular assist devices. J Heart Lung Transplant. 2014. 33(1). P. 80-7. 15. Chen Z., Koenig S.C., Slaughter M.S., Griffith B.P., Wu Z.J. Quantitative Characterization of Shear-Induced Platelet Receptor Shedding: Glycoprotein Ibalpha, Glycoprotein VI, and Glycoprotein IIb/IIIa. ASAIO J. 2018. 64(6). P. 773-778. 16. Chen Z., Mondal N.K., Ding J., Gao J., Griffith B.P., Wu Z.J. Shear-induced platelet receptor shedding by non-physiological high shear stress with short exposure time: glycoprotein Ibalpha and glycoprotein VI. Thromb Res. 2015. 135(4). P. 692-8. 17. Chen Z., Mondal N.K., Ding J., Koenig S.C., Slaughter M.S., Griffith B.P., Wu Z.J. Activation and shedding of platelet glycoprotein IIb/IIIa under non-physiological shear stress. Mol Cell Biochem. 2015. 409(1-2). P. 93-101. 18. Cheng A., Williamitis C.A., Slaughter M.S. Comparison of continuous-flow and pulsatile-flow left ventricular assist devices: is there an advantage to pulsatility? Ann Cardiothorac Surg. 2014. 3(6). P. 573-81. 19. Chen Z., Zhang J., Kareem K., Tran D., Conway R.G., Arias K., Griffith B.P., Wu Z.J. Device-induced platelet dysfunction in mechanically assisted circulation increases the risks of thrombosis and bleeding. Artif Organs. 2019. 43(8). P. 745-755. 20. Consolo F., Sferrazza G., Motolone G., Contri R., Valerio L., Lembo R., Pozzi L., Della Valle P., De Bonis M., Zangrillo A., Fiore G.B., Redaelli A., Slepian M.J., Pappalardo F. Platelet activation is a preoperative risk factor for the development of thromboembolic complications in patients with continuous-flow left ventricular assist device. Eur J Heart Fail. 2018. 20(4). P. 792-800. 21. Consolo F., Sferrazza G., Motolone G., Pieri M., De Bonis M., Zangrillo A., Redaelli A., Slepian M.J., Pappalardo F. Shear-Mediated Platelet Activation Enhances Thrombotic Complications in Patients With LVADs and Is Reversed After Heart Transplantation. ASAIO J. 2019. 65(4). P. e33-e35 22. Eckman P.M., John R. Bleeding and thrombosis in patients with continuous-flow ventricular assist devices. Circulation. 2012. 125(24). P. 3038-47. 23. Fatullayev J., Samak M., Sabashnikov A., Zeriouh M., Rahmanian P.B., Choi Y.H., Schmack B., Kallenbach K., Ruhparwar A., Eghbalzadeh K., Dohmen P.M., Karck M. et al. Continuous-Flow Left Ventricular Assist Device Thrombosis: A Danger Foreseen is a Danger Avoided. Med Sci Monit Basic Res. 2015. 21: P. 141-4. 24. Garbade J., Bittner H.B., Barten M.J., Mohr F.W. Current trends in implantable left ventricular assist devices. Cardiol Res Pract. 2011. Vol. 2011. P. 1-9. 25. Gurvits G.E., Fradkov E. Bleeding with the artificial heart: Gastrointestinal hemorrhage in CF-LVAD patients. World J Gastroenterol. 2017. 23(22). P. 3945-3953. 26. Hu J., Mondal N.K., Sorensen E.N., Cai L., Fang H.B., Griffith B.P., Wu Z.J. Platelet glycoprotein Ibalpha ectodomain shedding and non-surgical bleeding in heart failure patients supported by continuous-flow left ventricular assist devices. J Heart Lung Transplant. 2014. 33(1). P. 71-9. 27. Jaffer I.H., Fredenburgh J.C., Hirsh J., Weitz J.I. Medical device-induced thrombosis: what causes it and how can we prevent it? J Thromb Haemost. 2015. P. S72-81. 28. Jaganathan S.K., Supriyanto E., Murugesan S., Balaji A., Asokan M.K. Biomaterials in cardiovascular research: applications and clinical implications. Biomed Res Int. 2014. Vol.2014. P. 1-11. 29. John R., Panch S., Hrabe J., Wei P., Solovey A., Joyce L., Hebbel R. Activation of Endothelial and Coagulation Systems in Left Ventricular Assist Device Recipients. The Annals of Thoracic Surgery. 2009. 88(4). P. 1171-1179. 30. Kadakia S., Moore R., Ambur V., Toyoda Y. Current status of the implantable LVAD. Gen Thorac Cardiovasc Surg. 2016. 64(9). P. 501-8. 31. Klovaite J., Gustafsson F., Mortensen S.A., Sander K., Nielsen L.B. Severely impaired von Willebrand factor-dependent platelet aggregation in patients with a continuous-flow left ventricular assist device (HeartMate II). J Am Coll Cardiol. 2009. 53(23). P. 2162-7. 32. Koliopoulou A., McKellar S.H., Rondina M., Selzman C.H. Bleeding and thrombosis in chronic ventricular assist device therapy: focus on platelets. Curr Opin Cardiol. 2016. 31(3). P. 299-307. 33. Koliopoulou A., Selzman C.H. Stop the LVAD bleeding // J Thorac Dis. 2017. 9(5). P. E437-E439. 34. Kushnir V.M., Sharma S., Ewald G.A., Seccombe J., Novak E., Wang I.W., Joseph S.M., Gyawali C.P. Evaluation of GI bleeding after implantation of left ventricular assist device. Gastrointest Endosc. 2012. 75(5). P. 973-9. 35. Meyer A.L., Malehsa D., Bara C., Budde U., Slaughter M.S., Haverich A., Strueber M. Acquired von Willebrand syndrome in patients with an axial flow left ventricular assist device. Circ Heart Fail. 2010. 3(6). P. 675-81. 36. Mondal N.K., Sorensen E.N., Hiivala N.J., Feller E.D., Pham S.M., Griffith B.P., Wu Z.J. Intraplatelet reactive oxygen species, mitochondrial damage and platelet apoptosis augment non-surgical bleeding in heart failure patients supported by continuous-flow left ventricular assist device. Platelets. 2015. 26(6). P. 536-44. 37. Muslem R., Caliskan K., Leebeek F.W.G. Acquired coagulopathy in patients with left ventricular assist devices. J Thromb Haemost. 2018. 16(3). P. 429-440 38. Nascimbene A., Neelamegham S., Frazier O.H., Moake J.L., Dong J.F. Acquired von Willebrand syndrome associated with left ventricular assist device. Blood. 2016. 127(25). P. 3133-41. 39. Nose Y. Heart failure: Continuous-flow LVADs improve clinical outcomes. Nat Rev Cardiol. 2010. 7(4). P. 184-6. 40. Pillitteri D., Pilgrimm A.K., Kirchmaier C.M. Novel Mutations in the GPIIb and GPIIIa Genes in Glanzmann Thrombasthenia. Transfus Med Hemother. 2010. 37(5). P. 268-277. 41. Potapov E.V., Ignatenko S., Nasseri B.A., Loebe M., Harke C., Bettmann M., Doller A., Regitz-Zagrosek V., Hetzer R. Clinical significance of PlA polymorphism of platelet GP IIb/IIIa receptors during long-term VAD support. Ann Thorac Surg. 2004. 77(3). P. 869-74. 42. Pya Y., Bekbossynova M., Jetybayeva S., Bekbossynov S., Andossova S., Salov R., Medressova A., Novikova S., Murzagaliyev M. Initial 3-year outcomes with left ventricular assist devices in a country with a nascent heart transplantation program. ESC Heart Fail. 2016. 3(1). p. 26-34. 43. Radovancevic R., Matijevic N., Bracey A.W., Radovancevic B., Elayda M., Gregoric I.D., Frazier O.H. Increased leukocyte-platelet interactions during circulatory support with left ventricular assist devices. ASAIO J. 2009. 55(5). P. 459-64. 44. Schlendorf K., Patel C.B., Gehrig T., Kiefer T.L., Felker G.M., Hernandez A.F., Blue L.J., Milano C.A., Rogers J.G. Thrombolytic therapy for thrombosis of continuous flow ventricular assist devices. J Card Fail. 2014. 20(2). P. 91-7 45. Selgrade B.P., Truskey G.A. Computational fluid dynamics analysis to determine shear stresses and rates in a centrifugal left ventricular assist device. Artif Organs. 2012. 36(4). P. E89-96. 46. Slaughter M.S. Hematologic effects of continuous flow left ventricular assist devices. J Cardiovasc Transl Res. 2010. 3(6). P. 618-24. 47. Slaughter M.S., Sobieski II M. A., Graham J.D., Pappas P.S., Tatooles A.J., Koenig S.C. Platelet activation in heart failure patients supported by the HeartMate II ventricular assist device. Int J Artif Organs. 2011. 34(6). P. 461-8. 48. Steinlechner B., Dworschak M., Birkenberg B., Duris M., Zeidler P., Fischer H., Milosevic L., Wieselthaler G., Wolner E., Quehenberger P., Jilma B. Platelet dysfunction in outpatients with left ventricular assist devices. Ann Thorac Surg. 2009. 87(1). p. 131-7. 49. Suarez J., Patel C.B., Felker G.M., Becker R., Hernandez A.F., Rogers J.G. Mechanisms of bleeding and approach to patients with axial-flow left ventricular assist devices. Circ Heart Fail. 2011. 4(6). P. 779-84 50. Susen S., Rauch A., Van Belle E., Vincentelli A., Lenting P.J. Circulatory support devices: fundamental aspects and clinical management of bleeding and thrombosis. J Thromb Haemost. 2015. 13(10). P. 1757-67 51. Szarszoi O., Maly J., Turek D., Urban M., Skalsky I., Riha H., Maluskova J., Pirk J., Netuka I. Implantation of Left Ventricular Assist Device Complicated by Undiagnosed Thrombophilia. Tex Heart Inst J. 2012. 39(5). P. 615-7. 52. Valerio L., Consolo F., Bluestein D., Tran P., Slepian M., Redaelli A., Pappalardo F. Shear-mediated platelet activation in patients implanted with continuous flow LVADs: A preliminary study utilizing the platelet activity state (PAS) assay. Conf Proc IEEE Eng Med Biol Soc. 2015 Aug. P. 1255-8. 53. Valerio L., Tran P.L., Sheriff J., Brengle W., Ghosh R., Chiu W.C., Redaelli A., Fiore G.B., Pappalardo F., Bluestein D., Slepian M.J. Aspirin has limited ability to modulate shear-mediated platelet activation associated with elevated shear stress of ventricular assist devices. Thromb Res. 2016. Vol. 140. P. 110-117. 54. Vincent F., Rauch A., Loobuyck V., Robin E., Nix C., Vincentelli A., Smadja D.M., Leprince P., Amour J., Lemesle G., Spillemaeker H., Debry N. et al. Arterial Pulsatility and Circulating von Willebrand Factor in Patients on Mechanical Circulatory Support. J Am Coll Cardiol. 2018. 71(19). P. 2106-2118. 55. Wever-Pinzon O., Selzman C.H., Drakos S.G., Saidi A., Stoddard G.J., Gilbert E.M., Labedi M., Reid B.B., et al. Pulsatility and the risk of nonsurgical bleeding in patients supported with the continuous-flow left ventricular assist device HeartMate II. Circ Heart Fail. 2013. 6(3). P. 517-26. 56. Zimpfer D., Netuka I., Schmitto J.D., Pya Y., Garbade J., Morshuis M., Beyersdorf F., Marasco S., Rao V., Damme L., Sood P., Krabatsch T. Multicentre clinical trial experience with the HeartMate 3 left ventricular assist device: 30-day outcomes. Eur J Cardiothorac Surg. 2016. 50(3). P. 548-54.
Көрген адамдардың саны: 460

Түйенді сөздер:

Мақалалар санаты: Әдебиеттерге шолу

Библиографиялық сілтемелер

Жалбинова М.Р., Рахимова С.Е., Бекбосынова М.С., Андосова С.А., Акильжанова А.Р. Сол жақ қарыншаның имплантацияланған механикалық аппараты бар науқастардағы гематологиялық асқынулардың себептері мен механизмдері // Ғылым және Денсаулық сақтау. 2020. 1 (Т.22). Б. 5-16. doi:10.34689/SH.2020.22.1.001

Авторизируйтесь для отправки комментариев