Online ISSN: 3007-0244,
Print ISSN:  2410-4280
COVID-19 КОРОНАВИРУСТЫҚ ИНФЕКЦИЯСЫНЫҢ ПАНДЕМИЯСЫ КЕЗІНДЕГІ АРТЕРИЯЛЫҚ ГИПЕРТЕНЗИЯ АҒЫМЫ МЕН СЕМІЗДІКТІҢ ЕРЕКШЕЛІКТЕРІ. ӘДЕБИ ШОЛУ
Өзектілігі. Covid-19 коронавирустық инфекциясы эпидемиялық ошағы Хубэй провинциясының Ухань қаласында (Қытай, 2019 жылғы желтоқсан) басталғаны белгілі. 2022 жылдың 14 сәуірінде бүкіл әлем бойынша коронавирустық инфекцияның 501 миллионнан астам жағдайы тіркелді және 6,2 миллионнан астам өлім расталды, бұл Covid-19 пандемиясын тарихтағы ең өлімге әкелетіндердің біріне айналдырды. Коронавирустық инфекцияның пандемиясы жұқпалы емес соматикалық патологияның, көбінесе жүрек-қан тамырлары ауруларының таралуын арттырды. Мақсаты. COVID-19 коронавирустық инфекциясының артериялық гипертензия ағымы мен семіздікке әсерін зерттеу. Іздеу стратегиясы. Әдебиет деректерін талдауды біз Cochrane Library базаларында, 2019 жылдың желтоқсанынан 2024 жылдың ақпанына дейін аралықта Pubmed іздеу базаларында жүргіздік, 2018 гайдлайндары AГ және семіздіктің таралуын анықтау үшін пайдаланылды. Қосу критерилері: жүйелі шолулар, проспективті және ретроспективті когорттық зерттеулер. Қоспау критерийлері: 18 жасқа дейінгі балаларға КВИ-дің әсері мәселелерін қарастыратын мақалалар, жүктілілік, қатерлі ісіктер, covid-19-ға дейінгі миокард инфарктісі, инсульт, аритмия, созылмалы бүйрек аурулары соңғы сатылары, аутоиммунды аурулардың болуы. 500-ден астам дереккөз табылды, талдау үшін 93 дереккөз таңдалды Нәтижелері. Ағзаға жаңа вирустың енуі нәтижесінде ренин-ангиотензин-альдостерон жүйесінің (РААС) компоненттерінің зақымдануын ескере отырып, әлемдік медициналық қоғамдастықта АГ бар науқастардың SARS-CoV-2 инфекциясына жоғары сезімталдығы туралы гипотеза пайда болды. Сонымен қатар, AГ бар науқастарда COVID-19 коронавирустық инфекциясы әсерінен жүрек-қан тамырлары қауіп қатерлері артады, өйткені қан қысымы деңгейінің тұрақсыздығы, қан қысымының тәуліктік профиліндегі айқын өзгерістер, эндотелий дисфункциясы мен тромбоздық асқынулар анықталады
Шынар К. Ахметжанова1, https://orcid.org/0000-0002-8906-9922 Серик А. Байдурин1, https://orcid.org/0000-0002-3662-4160 Шолпан Т. Жукушева1, https://orcid.org/0000-0003-1902-8284 Сабира Казкенова1,, https://orcid.org/0009-0001-0669-1696 Гульжан Алиайдар2, https://orcid.org/0009-0005-0857-1793 1 КеАҚ «Астана медицина университеті», Астана қ., Қазақстан Республикасы; 2 Қазақстан Республикасы Президенті іс басқармасы медициналық орталығының ауруханасы, Астана қ., Қазақстан Республикасы.
1. Баланова Ю.А., Шальнова С.А., Деев А.Д. и др. Ожирение в российской популяции – распространенность и ассоциации с факторами риска хронических неинфекционных заболеваний. Российский кардиологический журнал. 2018. 6: 123–30. https://doi.org/10.15829/1560-4071-2018-6-123-130 (Дата обращения 07.08.2023) 2. Всемирная организация здравоохранения, 2021. Ожирение и избыточный вес. https://www.who.int/ru/news-room/fact-sheets/detail/obesity-and-overweight (Дата обращения 04.08.2023) 3. Гуржий Т. ВОЗ отменила статус пандемии для Covid-19. https://kz.kursiv.media/2023-05-05/ttgr-pandemiya/ (Дата обращени 07.07.2023) 4. Заикина М.П., Капустина В.А., Савельев С.И. Парадокс ожирения при сердечно-сосудистых заболеваниях и сахарном диабете (аналитический обзор) // Здравоохранение Российской Федерации, 2021. 65 (2), 135-142. 5. Шарман А.. Почему люди с ожирением тяжело переносят Covid-19. 2022. /электронный источник, https://informburo.kz/mneniya/almaz-sharman/pocemu-lyudi-s-ozireniem-tyazelo-perenosyat-covid-19 (Дата обращения 07.11.2023) 6. AbdelMassih A., Yacoub E., Husseiny R. J., Kamel A. et all. Hypoxia-inducible factor (HIF): The link between obesity and COVID-19 // Obesity medicine, 2021. 22, 100317. https://doi.org/10.1016/j.obmed.2020.100317 (Accessed 05.12.2023) 7. Ban J. et all. Associations between short-term exposure to PM2.5 and stroke incidence and mortality in China: A case-crossover study and estimation of the burden. Environmental pollution (Barking, Essex: 1987), 2021. 268(Pt A), 115743. https://doi.org/10.1016/j.envpol.2020.115743 (Accessed 05.11.2023) 8. Bordallo B., Bellas M., Cortez A. F., Vieira M. & Pinheiro, M. Severe COVID-19: what have we learned with the immunopathogenesis? // Advances in rheumatology (London, England), 2020. 60(1), 50. https://doi.org/10.1186/s42358-020-00151-7 (Accessed 03.11.2023) 9. Cai X., Song S., Hu J., Wang L., et all. Systemic Inflammation Response Index as a Predictor of Stroke Risk in Elderly Patients with Hypertension: A Cohort Study // Journal of inflammation research, 2023. 16, 4821–4832. https://doi.org/10.2147/JIR.S433190 (Accessed 11.09.2023) 10. Cho S.M.J., Koyama S., Ruan Y., Lannery K., Natarajan P. Measured Blood Pressure, Genetically Predicted Blood Pressure, and Cardiovascular Disease Risk in the UK Biobank // JAMA cardiology, 2022. 7(11), 1129–1137. https://doi.org/10.1001/jamacardio.2022.3191 (Accessed 05.12.2023) 11. Ciceri F., Castagna A., Rovere-Querini P., De Cobelli F., et all. Early predictors of clinical outcomes of COVID-19 outbreak in Milan, Italy // Clinical immunology (Orlando, Fla.), 2020. 217, 108-509. https://doi.org/10.1016/j.clim.2020.108509 (Accessed 11.08.2023) 12. Cummings M.J., Baldwin M.R., Abrams D., Jacobson S.D., O'Donnell M.R. Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: a prospective cohort study // Lancet (London, England), 2020. 395(10239), 1763–1770. https://doi.org/10.1016/S0140-6736(20)31189-2 (Accessed 20.08.2023) 13. de la Sierra A. Blood Pressure Variability as a Risk Factor for Cardiovascular Disease: Which Antihypertensive Agents Are More Effective? // Journal of clinical medicine, 2023. 12(19), 6167. https://doi.org/10.3390/jcm12196167 (Accessed 25.09.2023) 14. de Leeuw A.J.M., Oude Luttikhuis M.A.M. et al. Obesity and its impact on COVID-19 // Journal of molecular medicine (Berlin, Germany), 2021. 99(7), 899–915. https://doi.org/10.1007/s00109-021-02072-4 (Accessed 06.12.2023) 15. Del Pinto R. et al. Prognostic importance of long-term SBP variability in high-risk hypertension // Journal of hypertension, 2020. 38(11), 2237–2244. https://doi.org/10.1097/HJH.0000000000002552 (Accessed 17.08.2023) 16. Deng S.Q., Peng H.J. Characteristics of and Public Health Responses to the Coronavirus Disease 2019 Outbreak in China // Journal of clinical medicine, 2020. 9(2), 575. https://doi.org/10.3390/jcm9020575 (Accessed 09.09.2023) 17. Desta D.M., Wondafrash D.Z., Tsadik A.G. et al. Prevalence of Hypertensive Emergency and Associated Factors Among Hospitalized Patients with Hypertensive Crisis: A Retrospective Cross-Sectional Study // Integr Blood Press Control 2020. 13: 95–102. DOI: 10.2147/IBPC.S26 66 https://doi.org/10.2147/IBPC.S265183 (Accessed 14.08.2023) 18. Domínguez G., Garrido C., Cornejo M., Danke K., Acuña M. Factores demográficos y comorbilidades asociadas a severidad de COVID-19 en un hospital chileno: el rol clave del nivel socioeconómico [Comorbidities and demographic factors associated with severe COVID-19 outcomes in a Chilean hospital] // Revista medica de Chile, 2021. 149(8), 1141–1149. https://doi.org/10.4067/s0034-98872021000801141 (Accessed 03.08.2023) 19. Dong E., Du H., Gardner L. An interactive web-based dashboard to track COVID-19 in real time // The Lancet. Infectious diseases, 2020. 20(5), 533–534. https://doi.org/10.1016/S1473-3099(20)30120-1 (Accessed 18.08.2023) 20. Ekiz T., Pazarlı A.C. Relationship between COVID-19 and obesity // Diabetes & metabolic syndrome, 2020. 14(5), 761–763. https://doi.org/10.1016/j.dsx.2020.05.047 (Accessed 21.08.2023) 21. Elagizi A., Kachur S., Lavie C. J., Carbone S., et all. An Overview and Update on Obesity and the Obesity Paradox in Cardiovascular Diseases // Progress in cardiovascular diseases, 2018. 61(2), 142–150. https://doi.org/10.1016/j.pcad.2018.07.003 (Accessed 03.08.2023) 22. Ferrigno I., Verzellesi L., Ottone M., Bonacini M., et all. CCL18, CHI3L1, ANG2, IL-6 systemic levels are associated with the extent of lung damage and radiomic features in SARS-CoV-2 infection // Inflammation research : official journal of the European Histamine Research. 2024 Advance online publication. https://doi.org/10.1007/s00011-024-01852-1 Accessed 07.08.2023) 23. Fuchs F.D., Whelton P.K. High Blood Pressure and Cardiovascular Disease // Hypertension (Dallas, Tex.: 1979), 2020. 75(2), 285–292. https://doi.org/10.1161/HYPERTENSIONAHA.119.14240 (Accessed 08.07.2023) 24. Gao F., Zheng K.I., Wang X.B., Sun Q.F., Zheng, M.H. Obesity Is a Risk Factor for Greater COVID-19 Severity // Diabetes care, 2020. 43(7), e72–e74. https://doi.org/10.2337/dc20-0682 (Accessed 26.11.2023) 25. Gasmi A., Noor S., Menzel A., Doşa A., Pivina L., Bjørklund G. Obesity and Insulin Resistance: Associations with Chronic Inflammation, Genetic and Epigenetic Factors // Current medicinal chemistry, 2021. 28(4), 800–826. https://doi.org/10.2174/0929867327666200824112056 (Accessed 02.07.2023) 26. GBD 2019 Risk Factors Collaborators. Global burden of 87 risk factors in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019 // Lancet (London, England), 2020. 396(10258), 1223–1249. https://doi.org/10.1016/S0140-6736(20)30752-2 (Accessed 09.07.2023)) 27. Grasselli G., Zangrillo A., Zanella A., Antonelli M., at all. COVID-19 Lombardy ICU Network. Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy // JAMA, 2020. 323(16), 1574–1581. https://doi.org/10.1001/jama.2020.5394 (Accessed 25.07.2023) 28. Guanghong J. Jet al. Obesity in Hypertension: The Role of the Expanding Waistline Over the Years and Insights Into the Future. 2023. https://doi.org/10.1161/HYPERTENSIONAHA.123.21719 (Accessed 18.07.2023) 29. Han Q., Lin Q., Jin S., You L. Coronavirus 2019-nCoV: A brief perspective from the front line // The Journal of infection, 2020. 80(4), 373–377. https://doi.org/10.1016/j.jinf.2020.02.01 (Accessed 05.12.2023) 30. He C., Liu C., Yang J., Tan H., t all. Prognostic significance of day-by-day in-hospital blood pressure variability in COVID-19 patients with hypertension // Journal of clinical hypertension (Greenwich, Conn.), 2022. 24(3), 224–233. https://doi.org/10.1111/jch.14437 (Accessed 06.07.2023) 31. Hirano T., Murakami M. COVID-19: A New Virus, but a Familiar Receptor and Cytokine Release Syndrome // Immunity, 2020. 52(5), 731–733. https://doi.org/10.1016/j.immuni.2020.04.003 Accessed 26.07.2023) 32. Hoffmann M., Kleine-Weber H., Schroeder S., Krüger N. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor // Cell, 2020. 181(2), 271–280.e8. https://doi.org/10.1016/j.cell.2020.02.052 (Accessed 19.07.2023) 33. Huang C., Wang Y., Li X., Ren L., et all. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China // Lancet (London, England), 2020. 395(10223), 497–506. https://doi.org/10.1016/S0140-6736(20)30183-5 (Accessed 23.07.2023) 34. Huang I., Lim M. A., Pranata R. Diabetes mellitus is associated with increased mortality and severity of disease in COVID-19 pneumonia - A systematic review, meta-analysis, and meta-regression // Diabetes & metabolic syndrome, 2020. 14(4), 395–403. https://doi.org/10.1016/j.dsx.2020.04.018 (Accessed 14.09.2023) 35. Huang J., Zhang Z., Liu S., Gong C., Li D. Absolute Eosinophil Count Predicts Intensive Care Unit Transfer Among Elderly COVID-19 Patients From General Isolation Wards // Frontiers in medicine, 2020. 7, 585222. https://doi.org/10.3389/fmed.2020.585222 (Accessed 26.09.2023) 36. Jing M., Bao L., Seet R. Estimated Incidence and Mortality of Stroke in China. JAMA network open, 2023. 6(3), e231468. https://doi.org/10.1001/jamanetworkopen.2023.1468 (Accessed 27.09.2023) 37. Korakas E., Ikonomidis I., Kousathana F., Balampanis K., et all. Obesity and COVID-19: immune and metabolic derangement as a possible link to adverse clinical outcomes // American journal of physiology, Endocrinology and metabolism, 2020. 319(1), E105–E109. https://doi.org/10.1152/ajpendo.00198.2020 (Accessed 30.09.2023) 38. Kumar A., Narayan R. K., Kumari C., Faiq M.A. et all. SARS-CoV-2 cell entry receptor ACE2 mediated endothelial dysfunction leads to vascular thrombosis in COVID-19 patients // Medical hypotheses, 2020. 145, 110320. https://doi.org/10.1016/j.mehy.2020.110320 (Accessed 04.08.2023) 39. Lasbleiz A., Gaborit B., Soghomonian A., Bartoli A., Ancel P., Jacquier A., Dutour A. COVID-19 and Obesity: Role of Ectopic Visceral and Epicardial Adipose Tissues in Myocardial Injury // Frontiers in endocrinology, 2021. 12, 726967. https://doi.org/10.3389/fendo.2021.726967 (Accessed 27.07.2023) 40. Lavie C.J., Sanchis-Gomar F., Henry B.M., Lippi G. COVID-19 and obesity: links and risks // Expert review of endocrinology & metabolism, 2020. 15(4), 215–216. https://doi.org/10.1080/17446651.2020.1767589 (Accessed 30.08.2023) 41. Lee J.W., Chun W., Lee H.J., Min J.H., Oh S.R. The Role of Macrophages in the Development of Acute and Chronic Inflammatory Lung Diseases // Cells, 2021. 10(4), 897. https://doi.org/10.3390/cells10040897 (Accessed 16.07.2023) 42. Lee S.K., Lim Y., Jeong S., Han H.W. COVID-19-related cardiovascular disease risk due to weight gain: a nationwide cohort study // European journal of medical research, 2024. 29(1), 2. https://doi.org/10.1186/s40001-023-01569-7 (Accessed 26.01.2024) 43. Li F.K., An D.W., Guo Q.H., Zhang Y.Q. et all. Day-by-day blood pressure variability in hospitalized patients with COVID-19 // Journal of clinical hypertension (Greenwich, Conn.), 2021. 23(9), 1675–1680. https://doi.org/10.1111/jch.14338 (Accessed 02.11.2023) 44. Li G., Hu R., Zhang X. Antihypertensive treatment with ACEI/ARB of patients with COVID-19 complicated by hypertension // Hypertension research: official journal of the Japanese Society of Hypertension, 2020. 43(6), 588–590. https://doi.org/10.1038/s41440-020-0433-1 (Accessed 04.08.2023) 45. Li L., Gong S., Yan J. Covid-19 in China: ten critical issues for intensive care medicine // Critical care (London, England), 2020. 24(1), 124. https://doi.org/10.1186/s13054-020-02848-z (Accessed 06.11.2023) 46. Li X., Xu S., Yu M., Wang K., Tao Y., et all. Risk factors for severity and mortality in adult COVID-19 inpatients in Wuhan // The Journal of allergy and clinical immunology, 2020. 146(1), 110–118. https://doi.org/10.1016/j.jaci.2020.04.006 (Accessed 07.08.2023) 47. Liu P.P., Blet A., Smyth D., Li H. The Science Underlying COVID-19: Implications for the Cardiovascular System // Circulation, 2020.142(1), 68–78. https://doi.org/10.1161/CIRCULATIONAHA.120.047549 006 (Accessed 03.09.2023) 48. Lv P., Zhang L., Chen X. Pulse pressure level after acute ischemic stroke is associated with early neurological deterioration // Experimental and therapeutic medicine, 2023. 27(2), 61. https://doi.org/10.3892/etm.2023.12349 (Accessed 15.12.2023) 49. Magro C., Mulvey J.J., Berlin D., Nuovo G., Laurence J. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: A report of five cases // Translational research: the journal of laboratory and clinical medicine, 2020. 220, 1–13. https://doi.org/10.1016/j.trsl.2020.04.007 (Accessed 07.09.2023) 50. Mancusi C., Lembo M., Manzi M. V., Basile C., Fucile I., Morisco C. From Structural to Functional Hypertension Mediated Target Organ Damage-A Long Way to Heart Failure with Preserved Ejection Fraction // Journal of clinical medicine, 2022. 11(18), 5377. https://doi.org/10.3390/jcm11185377 (Accessed 02.11.2023) 51. Mehta P., McAuley D.F., Brown M. HLH Across Speciality Collaboration, UK. COVID-19: consider cytokine storm syndromes and immunosuppression // Lancet (London, England), 2020. 395(10229), 1033–1034. https://doi.org/10.1016/S0140-6736(20)30628-0 (Accessed 01.11.2023) 52. Melgarejo J.D., Vernooij M.W., Ikram M.A., Zhang Z.Y., Bos D. Intracranial Carotid Arteriosclerosis Mediates the Association Between Blood Pressure and Cerebral Small Vessel Disease // Hypertension (Dallas, Tex.: 1979), 2023. 80(3), 618–628. https://doi.org/10.1161/HYPERTENSIONAHA.122.20434 (Accessed 12.09.2023) 53. Mousavizadeh L., Ghasemi S. Genotype and phenotype of COVID-19: Their roles in pathogenesis. Journal of microbiology, immunology, and infection // Wei mian yu gan ran za zhi, 2021. 54(2), 159–163. https://doi.org/10.1016/j.jmii.2020.03.022 (Accessed 05.07.2023) 54. Muniyappa R., Gubbi S. COVID-19 pandemic, coronaviruses, and diabetes mellitus. American journal of physiology // Endocrinology and metabolism, 2020.318(5), E736–E741. https://doi.org/10.1152/ajpendo.00124.2020 (Accessed 06.08.2023) 55. Muscogiuri G., Pugliese G., Barrea L., Savastano S., Colao A. Commentary: Obesity: The "Achilles heel" for COVID-19? // Metabolism: clinical and experimental, 2020. 108, 154251. https://doi.org/10.1016/j.metabol.2020.154251 (Accessed 19.07.2023) 56. Nagai M., Fujiwara T., Kario K. Day-to-day blood pressure variability and severity of COVID-19: Is sympathetic overdrive a potential link? // Journal of clinical hypertension (Greenwich, Conn.), 2021. 23(9), 1681–1683. https://doi.org/10.1111/jch.14337 (Accessed 06.11.2023) 57. Nam J.H., Park J.I., Kim B.J., Kim H.T. et all. Clinical impact of blood pressure variability in patients with COVID-19 and hypertension // Blood pressure monitoring, 2021. 26(5), 348–356. https://doi.org/10.1097/MBP.0000000000000544 (Accessed 02.11.2023) 58. Nandy K., Salunke A., Pathak S. K., Pandey A., et all. Coronavirus disease (COVID-19): A systematic review and meta-analysis to evaluate the impact of various comorbidities on serious events // Diabetes & metabolic syndrome, 2020. 14(5), 1017–1025. https://doi.org/10.1016/j.dsx.2020.06.064 (Accessed 03.11.2023) 59. Ochani R., Asad A., Yasmin F., et all. COVID-19 pandemic: from origins to outcomes. A comprehensive review of viral pathogenesis, clinical manifestations, diagnostic evaluation, and management // Le infezioni in medicina, 2021. 29(1), 20–36. https://europepmc.org/article/med/33664170 (Accessed 02.09.2023) 60. Parati G., Stergiou G.S., Dolan E., Bilo G. Blood pressure variability: clinical relevance and application // Journal of clinical hypertension (Greenwich, Conn.), 2018. 20(7), 1133–1137. https://doi.org/10.1111/jch.13304 (Accessed 06.11.2023) 61. Parati G., Bilo G., Kollias A., Pengo M., at all. Blood pressure variability: methodological aspects, clinical relevance and practical indications for management - a European Society of Hypertension position paper // Journal of hypertension, 2023. 41(4), 527–544. https://doi.org/10.1097/HJH.0000000000003363 (Accessed 02.07.2023) 62. Pedralli M.L., Marschner R.A., Kollet D.P., Neto S.G., Eibel B. et all. Publisher Correction: Different exercise training modalities produce similar endothelial function improvements in individuals with prehypertension or hypertension: a randomized clinical trial // Scientific reports, 2020. 10(1), 10564. https://doi.org/10.1038/s41598-020-67586-2 (Accessed 09.11.2023) 63. Pellicori P., Doolub G., Wong C.M., Lee K.S. et all. COVID-19 and its cardiovascular effects: a systematic review of prevalence studies // The Cochrane database of systematic reviews, 2021. 3(3), CD013879. https://doi.org/10.1002/14651858.CD013879 (Accessed 12.07.2023) 64. Petrilli C.M., Jones S.A., Yang J., Rajagopalan H., at all. Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: prospective cohort study // BMJ (Clinical research ed.), 2020. 369, m1966. https://doi.org/10.1136/bmj.m1966 (Accessed 12.08.2023) 65. Porzionato A. et al. Sympathetic activation: a potential link between comorbidities and COVID-19 // The FEBS journal, 2020. 287(17), 3681–3688. https://doi.org/10.1111/febs.15481 (Accessed 09.11.2023) 66. Pranata R., Lim M.A., Huang I. et al. Hypertension is associated with increased mortality and severity of disease in COVID-19 pneumonia: A systematic review, meta-analysis and meta-regression // J Renin Angiotensin Aldosterone Syst. 2020. 21(2): https://doi.org/10.1177/1470320320926899 (Accessed 19.07.2023) 67. Rabkin S.W. Blood Pressure Variability: The Implications of Home Versus Automated Office Measurement. Hypertension (Dallas, Tex.: 1979), 2020. 75(5), 1161–1162. https://doi.org/10.1161/HYPERTENSIONAHA.119.14279 (Accessed 10.07.2023) 68. Richardson S., Hirsch J.S., Narasimhan M. et all. the Northwell COVID-19 Research Consortium. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area // JAMA, 2020. 323(20), 2052–2059. https://doi.org/10.1001/jama.2020.6775 (Accessed 04.07.2023) 69. Samidurai A., Das A. Cardiovascular Complications Associated with COVID-19 and Potential Therapeutic~Strategies // International journal of molecular sciences, 2020. 21(18), 6790. https://doi.org/10.3390/ijms21186790 (Accessed 12.07.2023) 70. Schmidt-Lauber C., Alba Schmidt E., Hänzelmann S., Petersen E.L., Wenzel U.O. Increased blood pressure after nonsevere COVID-19 // Journal of hypertension, 2023. 41(11), 1721–1729. https://doi.org/10.1097/HJH.0000000000003522 (Accessed 04.11.2023) 71. Schutte A.E., Kollias A., Stergiou G.S. Blood pressure and its variability: classic and novel measurement techniques. Nature reviews // Cardiology, 2022. 19(10), 643–654. https://doi.org/10.1038/s41569-022-00690-0 (Accessed 05.09.2023) 72. Schutte A.E., Srinivasapura Venkateshmurthy N., Mohan S., Prabhakaran D. Hypertension in Low- and Middle-Income Countries // Circulation research, 2021. 128(7), 808–826. https://doi.org/10.1161/CIRCRESAHA.120.318729 (Accessed 07.08.2023) 73. Sheikh A.B. et all. Blood Pressure Variability in Clinical Practice: Past, Present and the Future // Journal of the American Heart Association, 2023. 12(9), e029297. https://doi.org/10.1161/JAHA.122.029297 (Accessed 04.11.2023) 74. Sheth A.R., Grewal U.S., Patel H.P., Thakkar S. et all. Possible mechanisms responsible for acute coronary events in COVID-19 // Medical hypotheses, 2020. 143, 110125. https://doi.org/10.1016/j.mehy.2020.110125 (Accessed 07.10.2023) 75. Shibata S., Arima H., Asayama K., Hoshide S., Itoh H. Hypertension and related diseases in the era of COVID-19: a report from the Japanese Society of Hypertension Task Force on COVID-19. Hypertension research // Оfficial journal of the Japanese Society of Hypertension, 2020. 43(10), 1028–1046. https://doi.org/10.1038/s41440-020-0515-0 (Accessed 04.11.2023) 76. Simonnet A., Chetboun M., Poissy J., еt аll. LICORN and the Lille COVID-19 and Obesity study group. High Prevalence of Obesity in Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) Requiring Invasive Mechanical Ventilation // Obesity (Silver Spring). 2020 Jul;28(7):1195-1199. doi: 10.1002/oby.22831. Epub 2020 Jun 10. https://doi.org/10.1002/oby.22831 (Accessed 04.11.2023) 77. Ye Q., Wang B., Mao J. The pathogenesis and treatment of the `Cytokinesw Storm' in COVID-19 // The Journal of infection, 2020. 80(6), 607–613. https://doi.org/10.1016/j.jinf.2020.03.037 (Accessed 06.11.2023) 78. Sophie M. Holder, Rosa Maria Bruno, Daria A. Shkredova et all. Reference Intervals for Brachial Artery Flow-Mediated Dilation and the Relation With Cardiovascular Risk Factors // Hypertension. 2021. Vol.77.No.5. 1469-1480. https://doi.org/10.1161/HYPERTENSIONAHA.120.15754 (Accessed 06.11.2023) 79. Tomlins J., Hamilton F., Gunning S., Sheehy C., MacGowan A. Clinical features of 95 sequential hospitalised patients with novel coronavirus 2019 disease (COVID-19), the first UK cohort // The Journal of infection, 2020. 81(2), e59–e61. https://doi.org/10.1016/j.jinf.2020.04.020 (Accessed 07.11.2023) 80. Verdecchia P., Cavallini C., Spanevello A., Angeli F. COVID-19: ACE2centric Infective Disease? // Hypertension (Dallas, Tex.: 1979), 2020. 76(2), 294–299. https://doi.org/10.1161/HYPERTENSIONAHA.120.15353 (Accessed 07.11.2023) 81. Virani S.S. et al. American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee - 2020. Heart Disease and Stroke Statistics - 2020 Update: A Report From the American Heart Association // Circulation, 2020. 141(9), e139–e596. https://doi.org/10.1161/CIR.0000000000000757 (Accessed 03.11.2023) 82. Wang D., Hu B, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China // JAMA, 2020. 323(11), 1061–1069. https://doi.org/10.1001/jama.2020.1585 (accessed 04.07.2023) 83. Wang Y. et al. Clinical Course and Outcomes of 344 Intensive Care Patients with COVID-19 // American journal of respiratory and critical care medicine, 2020. 201(11), 1430–1434. https://doi.org/10.1164/rccm.202003-0736LE (accessed 05.11.2023) 84. Wendisch D. et all. SARS-CoV-2 infection triggers profibrotic macrophage responses and lung fibrosis // Cell, 2021. 184(26), 6243–6261.e27. https://doi.org/10.1016/j.cell.2021.11.033 (accessed 03.09.2023) 85. Whelton P.K., Carey R.M., Aronow W.S. et al. ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines // Hypertension. 2018. 71 (6): 1269–324. https://doi.org/10.1161/HYP.0000000000000066 (accessed 03.10.2023) 86. Williams B. et all & ESC Scientific Document Group. 2018 ESC/ESH Guidelines for the management of arterial hypertension // European heart journal, 2018. 39(33), 3021–3104. https://doi.org/10.1093/eurheartj/ehy339 (accessed 04.12.2023) 87. Woo S.C., Yung K.S., Wong T., Yu E.L.M., Leung W.S. Imaging findings of critically ill patients with COVID-19 pneumonia: a case series // Hong Kong medical journal = Xianggang yi xue za zhi, 2020. 26(3), 236–239. https://doi.org/10.12809/hkmj208441 (accessed 17.10.2023) 88. Wu J.H., Li X., Huang B., Su H., et all. Pathological changes of fatal coronavirus disease 2019 (COVID-19) in the lungs: report of 10 cases by postmortem needle autopsy // Zhonghua bing li xue za zhi = Chinese journal of pathology, 2020. 49(6), 568–575. https://doi.org/10.3760/cma.j.cn112151-20200405-00291 (accessed 07.11.2023) 89. Xie Y., Xu E., Bowe B., Al-Aly Z. Long-term cardiovascular outcomes of COVID-19 // Nature medicine, 2022. 28(3), 583–590. https://doi.org/10.1038/s41591-022-01689-3 (accessed 09.11.2023) 90. Xu J., Jiang F. et al. Ambulatory blood pressure profile and stroke recurrence // Stroke and vascular neurology, 2021. 6(3), 352–358. https://doi.org/10.1136/svn-2020-000526 (accessed 07.11.2023) 91. Zheng K.I. et al. Letter to the Editor: Obesity as a risk factor for greater severity of COVID-19 in patients with metabolic associated fatty liver disease // Metabolism: clinical and experimental, 2020. 108, 154244. https://doi.org/10.1016/j.metabol.2020.154244 (accessed 03.10.2023) 92. Zheng Z., Peng F., et all. Risk factors of critical & mortal COVID-19 cases: A systematic literature review and meta-analysis // The Journal of infection, 2020. 81(2), e16–e25. https://doi.org/10.1016/j.jinf.2020.04.021 (accessed 12.11.2023) 93. Zhou F., Yu T., Du R., Fan G., Cao B. et all. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet (London, England), 2020. 395(10229), 1054–1062. https://doi.org/10.1016/S0140-6736(20)30566-3 (accessed 09.10.2023) References: 1. Balanova Yu.A., Shal'nova S.A., Deev A.D. i dr. Ozhirenie v rossiiskoi populyatsii – rasprostranennost' i assotsiatsii s faktorami riska khronicheskikh neinfektsionnykh zabolevanii [Obesity in the Russian population – prevalence and associations with risk factors for chronic non-communicable diseases.]. Rossiiskii kardiologicheskii zhurnal [Russian cardiological journal] 2018. 6: 123–30. https://doi.org/10.15829/1560-4071-2018-6-123-130 (accessed: 07.08.2023) [in Russian] 2. Vsemirnaya organizatsiya zdravookhraneniya, 2021. Ozhirenie i izbytochnyi ves [World Health Organization, 2021. Obesity and overweight]. https://www.who.int/ru/news-room/fact-sheets/detail/obesity-and-overweight (accessed: 04.08.2023) [in Russian] 3. Gurdjie T. VOZ otmenila status pandemii dlya Covid-19 [WHO has canceled the pandemic status for Covid-19]. https://kz.kursiv.media/2023-05-05/ttgr-pandemiya/ (accessed 07.07.2023) [in Russian] 4. Zaikina M.P., Kapustina V.A., Savel'ev S.I. Paradoks ozhireniya pri serdechno-sosudistykh zabolevaniyakh i sakharnom diabete (analiticheskii obzor) [The paradox of obesity in cardiovascular diseases and diabetes mellitus (analytical review)]. Zdravookhranenie [Healthcare], 2021. 65 (2), 135-142. https://cyberleninka.ru/article/n/paradoks-ozhireniya-pri-serdechno-sosudistyh-zabolevaniyah-i-saharnom-diabete-analiticheskiy-obzor (accessed 07.08.2023). [in Russian] 5. Sharman A. Problema izbytochnogo vesa naseleniya Kazakhstana [Why Obese people have a hard time tolerating Covid-19?]. (2022), https://informburo.kz/mneniya/almaz-sharman/pocemu-lyudi-s-ozireniem-tyazelo-perenosyat-covid-19 (accessed: 07.11.2023) [in Russian].
Көрген адамдардың саны: 955


Мақалалар санаты: COVID-19-өзекті тақырып

Библиографиялық сілтемелер

Ахметжанова Ш.К., Байдурин С.А., Жукушева Ш.Т., Казкенова С., Алиайдар Г. Особенности течения артериальной гипертензии и ожирения в период пандемии коронавирусной инфекции COVID-19 (Обзор литературы) // Наука и Здравоохранение. 2024. 1(Т.26). С. 156-167. doi 10.34689/SH.2024.26.1.020

Авторизируйтесь для отправки комментариев